• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
117 risultati
Tutti i risultati [1848]
Analisi matematica [117]
Diritto [303]
Matematica [250]
Fisica [211]
Biografie [215]
Temi generali [147]
Storia [136]
Economia [104]
Fisica matematica [105]
Arti visive [85]

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] le sue ricerche di meccanica analitica condotte negli anni Trenta del XIX sec., ebbe l'idea di considerare un certo integrale come una funzione dipendente dai suoi due estremi di integrazione. Ciò gli fu possibile perché la curva su cui valutava l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] almeno a partire dal 1800, Gauss aveva collegato la e.i.g. con lo studio dei periodi di un integrale ellittico considerato come funzione di un parametro, osservando che i periodi soddisfano l'equazione di Legendre (essa stessa un caso speciale della ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] delle applicazioni conformi quanto nella cartografia teorica. Divenne chiaro con la teoria delle funzioni ellittiche che tali funzioni, e gli integrali ellittici associati, erano necessariamente complesse. Questo non diminuì la loro utilità, e non ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] : [23]  x"+asenx=bsent,  x(0)=x(π)=0, scritto sotto la forma equivalente di equazione integrale: [24]  x(t)=∫π0G(t,s)[-asenx(s)+bsens]ds, mediante la funzione di Green G(t,s) del problema lineare associato, Georg Hamel (1877-1974) dimostra nel 1922 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] ogni x∈ℝn e per ogni λ=(λ1,...λν)∈ℝn−{0}. Per ogni aperto limitato Ω di ℝn e per ogni funzione lipschitziana u, si può calcolare l'integrale e considerare il problema di minimizzarne il valore sotto la condizione u=φ su ∂Ω, dove φ è un'assegnata ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] al primo nei campi newtoniani e dal primo al secondo punto nei campi coulombiani, per cui la funzione p. ha per definizione, in un dato punto, l'integrale di linea del vettore del campo dal punto di riferimento A al punto P nei campi newtoniani e ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

L'Età dei Lumi: matematica. Il calcolo delle variazioni

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Il calcolo delle variazioni Ivor Grattan-Guinness Il calcolo delle variazioni Il calcolo in una e più variabili Una volta sviluppata la teoria della differenziazione e integrazione [...] della matematica che egli affrontava. Egli tentò di fondare il calcolo differenziale e integrale sulle serie di Taylor, ottenendo le 'funzioni derivate' esclusivamente mediante metodi algebrici; i metodi variazionali ne derivano naturalmente, come un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

momento

Dizionario delle Scienze Fisiche (1996)

momento moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] in partic., è MO=0, risulta bO=cost, relazione nota come integrale primo del m. della quantità di moto e come principio, o asse di rotazione. ◆ [INF] M. normalizzato: funzione matematica usata per descrivere il processo di riconoscimento delle ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su momento (2)
Mostra Tutti

equazione

Dizionario delle Scienze Fisiche (1996)

equazione equazióne [Der. del lat. aequatio -onis "uguaglianza, uguagliamento", da aequare "uguagliare"] [LSF] Uguaglianza tra due espressioni (il primo e il secondo membro dell'e.) contenenti una o [...] quali l'incognita compare nell'argomento di funzioni trigonometriche. ◆ [ALG] [ANM] E. vettoriale: quella nella quale le funzioni incognite sono vettori (propr., le componenti di vettori). ◆ [ANM] Integrale e integrazione di un'e. differenziale: lo ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – METROLOGIA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su equazione (9)
Mostra Tutti

limite

Dizionario delle Scienze Fisiche (1996)

limite lìmite [Der del lat. limes -mitis] [LSF] Confine, termine, elemento di separazione; si specializza, in senso astratto, come il confine ideale al di sopra o al di sotto del quale si verifica un [...] lim''P→P⁰f(P), o con notazioni analoghe. Se l'=l''=l, la funzione ammette l. uguale a l per P→P₀, (e viceversa); essa si dice regolare corrispondono alle rette all'infinito. ◆ [PRB] Teorema (integrale e locale) del l. centrale: v. LIMITE CENTRALE, ... Leggi Tutto
CATEGORIA: BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su limite (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 12
Vocabolario
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
filo-integralista agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali