La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] quoziente dell'anello k[x,y] per l'ideale I(C). Se due funzioni di A(C) sono distinte, allora esistono punti della curva nei quali esse teorema di Riemann-Roch riguarda in modo naturale i fasci lineari, e ciò ne fa un argomento della teoria dei ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria
Roshdi Rashed
Algebra e linguistica. Gli inizi dell'analisi combinatoria
Intorno [...] x1, ..., x10, si cerca un sistema di equazioni lineari a sei incognite; egli ottiene
equazioni a sei incognite; stile che egli aveva bisogno per stabilire il teorema sulle funzioni aritmetiche elementari, il numero dei divisori propri di un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Bonnet (1819-1892), Gauss dimostrò che l'integrale della funzione curvatura esteso a un triangolo finito i cui lati quali condizioni una n-varietà ammette n campi vettoriali ovunque linearmente indipendenti, una ricerca che lo portò a studiare il ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] a 0 quando x tende ad x0 in U−{x0}. Si dimostra facilmente che due funzioni affini x→a+u(x−x0), x→b+v(x−x0) (dove a, b appartengono ad ℝn ed u e v sono applicazioni lineari da ℝm a ℝn) possono essere tangenti in x0 soltanto quando esse coincidono. Ne ...
Leggi Tutto
Scienza egizia. Matematica
Walter Friedrich Reineke
Friedhelm Hoffmann
Matematica
Nel mondo ellenistico, l'antichissimo, venerando e nondimeno meraviglioso Egitto era considerato la culla della scienza. [...] costruzione di templi e di argini, o l'espletamento delle funzioni difensive.
A questo periodo risale la formazione di centri alcuni esercizi che si risolverebbero modernamente come equazioni lineari con un'incognita, e che corrispondono ai calcoli ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...]
[3] aφ(m)≡1 (mod m),
in cui φ(m) è la cosiddetta 'funzione di Euler', che conta il numero di interi tra 0 e m che sono primi con binarie ax2+bxy+cy2 equivalenti rispetto alle trasformazioni lineari intere invertibili, di cui sopra, identificate da ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] alla forma desiderata, nella [18] occorreva rimpiazzare r con una funzione di φ. Così, come Euler, anche Clairaut entrò qui in 'afelio, sarebbe stato possibile ottenere e risolvere equazioni differenziali lineari del primo ordine in dh/dt e dk/dt per ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] i punti critici di J è lo spazio di Sobolev H=W01,2(Ω) delle funzioni u∈L2(Ω) che hanno derivate, nel senso delle distribuzioni, in L2(Ω) e n≥3, allora u≡0.
Equazioni di Schrödinger non lineari
Quando il problema è di tipo perturbativo la mancanza ...
Leggi Tutto
Caos
Robert L. Devaney
Introduzione storica
Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] Questo rappresenta un sistema dinamico non lineare, in quanto Pn non dipende linearmente da Pn-1, bensì
Pn = kPn-1 - kP²n-1
a che si chiama ordinamento di Sarkovskii. Sia F una qualsiasi funzione continua sulla retta reale o su un suo intervallo. Se ...
Leggi Tutto
Computazionali, metodi
Alfio Quarteroni
I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] più semplici, per esempio triangolari, allo scopo di facilitare la risoluzione di sistemi lineari di grandi dimensioni.
Approssimazione di funzioni
Se f:[a,b]→ℝ è una funzione reale nota, definita sull'intervallo [a,b] della retta reale, ci si pone ...
Leggi Tutto
linearita
linearità s. f. [der. di lineare1]. – L’esser lineare; solo in senso fig. (dirittura, rettitudine morale: la l. di una condotta), o in qualche partic. uso scientifico e tecnico: per es., in matematica, dimostrare la l. di una funzione;...
rete
réte s. f. [lat. rēte]. – 1. Intreccio di fili di materiale vario, incrociati e annodati tra loro regolarmente in modo che restino degli spazî liberi, detti maglie: il materiale (canapa, sparto, cocco e altre fibre vegetali; fibre artificiali;...