• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
204 risultati
Tutti i risultati [204]
Matematica [119]
Biografie [45]
Storia della matematica [36]
Fisica [27]
Geometria [24]
Fisica matematica [19]
Algebra [18]
Analisi matematica [19]
Storia della fisica [14]
Temi generali [11]

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] due complessi geometrici di celle di uno spazio euclideo e f :K→L un'applicazione continua che porta vertici di K in vertici di L. La metodo delle superfici di Riemann lo portò a utilizzare, per i calcoli, il rivestimento universale di una varietà. ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: fisica e chimica. Relatività e gravitazione

Storia della Scienza (2004)

La seconda rivoluzione scientifica: fisica e chimica. Relativita e gravitazione Clive W. Kilmister Relatività e gravitazione Problemi relativi alla gravitazione newtoniana Il successo della teoria [...] Levi-Civita (1873-1941), avevano generalizzato l'analisi di Gauss a un numero qualsiasi di dimensioni, dove la generalizzazione della R di Gauss era una matrice Rijkl, il tensore di Riemann-Christoffel. Era necessario studiare innanzi tutto il caso ... Leggi Tutto
CATEGORIA: RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] si avverte notevolmente la mancanza sia dell'intuizione geometrica sia dello sviluppo analitico (e totalmente degli grandi successi della teoria è stato il teorema di corrispondenza di Riemann-Hilbert, dimostrato indipendentemente da Mekbout e da ... Leggi Tutto
CATEGORIA: ALGEBRA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] disco. Inoltre questo disco aveva una struttura geometrica non euclidea invariante per l'azione dei gruppi e quindi la corrispondente superficie di Riemann era localmente uguale a una porzione di spazio non euclideo bidimensionale. Molto rapidamente ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] di Karl Georg Christian von Staudt, che nella Geometrie der Lage (Geometria di posizione, 1847) si riferiva alla geometria proiettiva. Alla geometria di sistemi di ordine comunque elevato. Per questi sistemi n-dimensionali, che seguendo Riemann ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La matematica del Novecento

Storia della civiltà europea a cura di Umberto Eco (2014)

Giorgio Strano Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook La matematica del Novecento è stata paragonata nel 1951 da Hermann Weyl al delta del [...] (L’idea della superficie di Riemann) era riuscito a edificare la teoria delle superfici di Riemann. Se i primi contributi alla topologia degli insiemi di punti hanno essenzialmente una motivazione geometrica dettata dallo studio dei sottoinsiemi ... Leggi Tutto

CREMONA, Luigi

Dizionario Biografico degli Italiani (1984)

CREMONA, Luigi U. Bottazzini Lauro Rossi Nacque a Pavia il 7 dic. 1830 da Gaudenzio, un novarese di famiglia assai agiata poi caduta in rovina, e da Teresa Andreoli. Ebbe tre fratelli tra i quali Tranquillo, [...] questi studi, de' quali ora vedo tutta l'importanza anche per la geometria" (Genova, Bibl. universitaria, Archivio Tardy). Lo studio delle teorie di Riemann e dell'opera di Clebsch e Gordan, ad esse strettamente ispirata, portò il C. ad occuparsi ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DI BERLINO – FUNZIONI ELLITTICHE – GEOMETRIA ANALITICA – FRANCESCO BRIOSCHI – CURVE ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su CREMONA, Luigi (4)
Mostra Tutti

Caccioppoli, Renato

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Renato Caccioppoli Luca Dell'Aglio Figura chiave nello sviluppo del pensiero matematico in Italia durante la prima parte del Novecento, le sue ricerche spaziano nei vari rami dell’analisi matematica, [...] di Hahn-Banach, egli giunse a provare l’esistenza degli integrali abeliani di prima, seconda e terza specie su una superficie di Riemann 101-10; M. Miranda, Renato Caccioppoli e la teoria geometrica della misura, pp. 111-18; E. Vesentini, Renato ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – EQUAZIONI ALLE DERIVATE PARZIALI – GEOMETRIA DIFFERENZIALE – EQUAZIONI DIFFERENZIALI – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su Caccioppoli, Renato (4)
Mostra Tutti

DINI, Ulisse

Dizionario Biografico degli Italiani (1991)

DINI, Ulisse Marta Menghini Nacque a Pisa il 14 ott. 1845 da Pietro e da Teresa Marchioneschi. Alunno della Scuola normale superiore, fu allievo all'università pisana di E. Betti e O. F. Mossotti, e [...] epoca, che preferivano l'adozione, particolarmente in campo geometrico, di metodi dimostrativi intuitivi, e alle quali non si sulle serie aritmetiche, noto col nome di "Riemann-Dini", il concetto di convergenza uniforme semplice, approfondito poi nel ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – EQUAZIONE A DERIVATE PARZIALI – INTERVALLO DI INTEGRAZIONE – GEOMETRIA DIFFERENZIALE – EQUAZIONE DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su DINI, Ulisse (3)
Mostra Tutti

Hilbert, problemi di

Enciclopedia della Matematica (2017)

Hilbert, problemi di Hilbert, problemi di lista di problemi (23 in tutto), all’epoca irrisolti, esposti in parte da D. Hilbert nel 1900, in occasione del secondo Congresso internazionale dei matematici [...] più breve distanza tra due punti Hilbert si chiede se si possano costruire altre geometrie che, come quella di Riemann o di Lobačevskij, vadano oltre la geometria euclidea, ma non per la negazione dell’assioma della parallela, quanto per la negazione ... Leggi Tutto
TAGS: SISTEMA DI ASSIOMI DI → ZERMELO-FRAENKEL – TEOREMA DI INCOMPLETEZZA DI GÖDEL – EQUAZIONE DIFFERENZIALE LINEARE – EQUAZIONE DI EULERO-LAGRANGE – TEOREMA DI → KRONECKER-WEBER
1 2 3 4 5 6 7 8 9 ... 21
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali