ellittico
ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] inversione di certi integrali e. e intervengono nella teoria delle equazioni differenziali alle derivate parziali. ◆ [ASF] Galassie e.: v. galassie: II 808 c. ◆ [ALG] Geometria e.: geometria non euclidea, introdotta da B. Riemann e perciò detta anche ...
Leggi Tutto
Laguerre Edmond-Nicolas
Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] x)]/dxn, oppure, per ricorrenza, dalla formula nLn=(2n-x-1)Ln-1-(n-1)Ln-2, L₁=1-x, L₀=1: v. equazioni differenziali ordinarie nel campo reale: II 459 c, d. L'equazione di L. interviene in vari problemi di meccanica quantistica, per es., nella teoria ...
Leggi Tutto
parabolico
parabòlico [agg. (pl.m. -ci) Der. di parabola] [LSF] (a) Che ha relazione con la parabola oppure con un'equazione algebrica di secondo grado con radici coincidenti. (b) Talora è usato impropr. [...] lineari alle derivate parziali del secondo ordine: v. equazioni differenziali lineari alle derivate parziali: II 444 e. ◆ [ALG] Geometria p.: lo stesso che geometria euclidea, cioè modellata a partire da tutti i postulati enunciati negli ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
differenziale
agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...