Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] e infinito. Gli unici cardinali che i linguaggi elementari sono in grado di distinguere sono quelli finiti, per esempio scrivendo
[7]∃x1,...,∃ algebrici (cioè gli insiemi di zeri di sistemi di polinomi) e, poiché per EQ ogni formula è equivalente a ...
Leggi Tutto
Previsioni economiche
Giovanni De Cindio
di Giovanni De Cindio
Previsioni economiche
Presupposti storici
La pratica sistematica delle previsioni economiche, cioè dell'attività di previsione avente [...] . In caso contrario si calcolano le differenze seconde: ΔX²t=ΔXt(ΔXt(₁. Se queste sono costanti la rappresentazione è un polinomio di secondo grado: xt=a+bt+ct². Se invece sono costanti i rapporti xt/xt(₁ tra i dati successivi della serie, allora la ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] Un episodio emblematico, che spiega a quale grado di sviluppo era giunta l'algebra lineare chiese per primo se il metodo di Horner-Ruffini per calcolare un polinomio avesse complessità minima. Negli anni Cinquanta venne quindi introdotto un modello ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra
Leo Corry
L'emergere della concezione strutturale in algebra
Il punto di vista strutturale [...] del teorema di Sturm sul numero di radici di un polinomio appartenenti a un dato intervallo reale. In questo teorema un caso limite e un indice rivelatore per valutare il grado di accettazione di idee 'strutturali' o 'astratte' nell'algebra ...
Leggi Tutto
armonica
armònica [s.f. Der. dell’agg. armonico] ◆ [ANM] Ciascuno dei termini sinusoidali dell’analisi armonica di una funzione: prima a., o a. fondamentale, seconda a., terza a., ecc. (sottintendendo [...] nella teoria del gruppo delle rotazioni. (a) Formulazione generale. Si dimostra che se Pn(r) è un polinomio omogeneo e armonico di grado n nello spazio tridimensionale con coordinate cartesiane r=r(sinJcosl, sinJsinl, cosJ), la funzione Un(r)=Pn(r ...
Leggi Tutto
invariante
invariante [agg. e s.m. Comp. di in- neg. e del part. pres. di variare] [LSF] (a) Generic., che non varia, che resta costante. (b) Specific., di ente, grandezza o anche di espressione, esprimente [...] il birapporto di 4 punti allineati è i. rispetto alle proiettività (i. proiettivo), il discriminante b2-4ac del polinomio di secondo grado ax2+bx+cy2 è i. rispetto alle sostituzioni lineari. ◆ [FPL] I. adiabatico: v. oltre: Teoria degli i. adiabatici ...
Leggi Tutto
rappresentazione galoisiana
Massimo Bertolini
Sia ℚ il campo dei numeri razionali e si indichi con ℚ_ la chiusura algebrica di ℚ. Il campo ℚ_ è il sottocampo del campo dei numeri complessi contenente [...] tutti i numeri algebrici, cioè quei numeri complessi che soddisfano un’equazione algebrica p(x)=0, dove p(x) è un polinomio xn+an−1xn−1+...+a0 di grado n≥1 a coefficienti in ℚ. In modo equivalente, si può definire ℚ_ come l’unione di tutti i campi di ...
Leggi Tutto
minimo
mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] dei numeri dati, ciascuno preso con il massimo esponente. ◆ [ALG] M. comune multiplo di polinomi: il polinomio di grado m. che sia multiplo di tutti i polinomi dati, sempre definito a meno di una costante moltiplicativa arbitraria. ◆ [ANM] M. di una ...
Leggi Tutto
massimo
màssimo [agg. e s.m. Der. del lat. maximus, superlativo di magnus "grande" e quindi "il più grande" e, sostantivato, "cosa la più grande possibile"] [ALG] M. comune divisore di ideali di un anello: [...] il minore esponente. ◆ [ALG] M. comune divisore di polinomi: il polinomio di grado massimo che sia divisore comune di tutti i polinomi dati; si determina scomponendo questi ultimi in prodotti di polinomi irriducibili e considerando poi i soli fattori ...
Leggi Tutto
anello di polinomi
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Si definisce anello di polinomi F[x] in una indeterminata x l’insieme dei simboli a0+a1x+...+anxn, dove n è un intero non [...] ottenuti. Se
p(x)=a0+a1x+...+anxne an≠0,
l’intero n si chiama grado di p(x) e si indica δp(x). La generalizzazione al caso F[x1,...,xν] di anelli di polinomi a più variabili è immediata, tenendo conto della definizione δx1α1x2α2...xναν=∑αι. L’anello ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....