• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
95 risultati
Tutti i risultati [95]
Matematica [57]
Algebra [26]
Fisica [17]
Geometria [17]
Analisi matematica [12]
Fisica matematica [11]
Biologia [10]
Meccanica quantistica [6]
Zoologia [5]
Storia della matematica [5]

Probabilita

Enciclopedia del Novecento (1980)

Probabilità Gian-Carlo Rota e Joseph P.S. Kung *La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi. sommario: 1. Introduzione. [...] se UT ha spettro discreto. Una trasformazione ergodica con spettro discreto è coniugata a una rotazione su un gruppo compatto abeliano. Inoltre due trasformazioni ergodiche con spettri discreti sono coniugate se, e soltanto se, gli operatori unitari ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – MATRICE DELLE PROBABILITÀ DI TRANSIZIONE – EQUAZIONE ALLE DERIVATE PARZIALI – LEGGE DEBOLE DEI GRANDI NUMERI – TEORIA QUANTISTICA DEI CAMPI
Mostra altri risultati Nascondi altri risultati su Probabilita (12)
Mostra Tutti

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] sorta di proposizione inversa, cioè che ogni equazione a coefficienti interi abeliana (ossia con gruppo di Galois abeliano, e dunque prodotto di gruppi ciclici) ha come radici funzioni razionali delle radici dell'unità. La dimostrazione completa fu ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] finito assegnato: esiste un corpo di numeri algebrici F, estensione di Galois di ℚ, tale che il suo gruppo di Galois sia G? Se G è abeliano la risposta è positiva come è facile provare. Shafarevich, nel 1954, ha mostrato che la risposta è ugualmente ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] e che ha molte importanti proprietà. In particolare, le proprietà aritmetiche di k si riflettono in proprietà del gruppo di Galois G di K su k, che è abeliano e isomorfo a Cm. Hecke dimostrò nel 1917 che le funzioni L di Weber soddisfano un'equazione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] in V. La teoria è stata sviluppata quasi esclusivamente nel caso dei gruppi riduttivi. Il morfismo π è suriettivo e ogni sua fibra contiene un trovato un controesempio a questo problema nel caso abeliano, David Saltman nel caso complesso. In questa ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

CONFORTO, Fabio

Dizionario Biografico degli Italiani (1983)

CONFORTO, Fabio Francesco Saverio Rossi Nato a Trieste nel 1909 da Ruggero e Irene Vascotto, quando la città era ancora parte integrante dell'Impero austro-ungarico, visse gli anni dell'infanzia, a [...] ) vengono trattate delle trasformazioni di 1a e 2a specie birazionali. Nel caso non abeliano invece, nell'ipotesi p = 0 e π > o le trasformazioni formano un gruppo formato da infinite schiere dipendenti da parametri variabili: se δ1. δ2 = 0, esse ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SECONDA GUERRA MONDIALE – EQUAZIONI DIFFERENZIALI – GEOMETRIA DESCRITTIVA – CALCOLO DIFFERENZIALE – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su CONFORTO, Fabio (3)
Mostra Tutti

Simmetrie e leggi di conservazione

Storia della civiltà europea a cura di Umberto Eco (2014)

Giorgio Strano Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook Nel Novecento lo sviluppo della fisica delle particelle ha portato alla formulazione [...] il risultato delle due trasformazioni dipende dall’ordine in cui queste vengono effettuate. Un esempio di gruppo non-abeliano è il gruppo SU(2), corrispondente alle rotazioni in tre dimensioni. Nel decennio successivo, fu mostrato da Glashow, Salam ... Leggi Tutto

semigruppo

Enciclopedia della Matematica (2013)

semigruppo semigruppo insieme A dotato di un’operazione binaria interna associativa (→ associatività); formalmente si definisce come una coppia (A, ∗), dove A è un insieme non vuoto e dove ∗: A × A → [...] associativa su A. Se l’operazione ∗ è commutativa, allora il semigruppo è detto commutativo o abeliano. Similmente al caso dei gruppi, un semigruppo si dice moltiplicativo se l’operazione è trattata formalmente come una moltiplicazione (notazione ... Leggi Tutto
TAGS: INSIEME DEI NUMERI NATURALI – OPERAZIONE BINARIA – ELEMENTO NEUTRO – NUMERI INTERI – COMMUTATIVO
Mostra altri risultati Nascondi altri risultati su semigruppo (2)
Mostra Tutti

isometrie, gruppo delle

Enciclopedia della Matematica (2013)

isometrie, gruppo delle isometrie, gruppo delle struttura algebrica di gruppo che si ottiene definendo nell’insieme I delle isometrie (del piano e dello spazio) l’operazione di composizione di trasformazioni [...] . Le traslazioni, così come le rotazioni di dato centro, formano un sottogruppo abeliano (cioè commutativo). Il gruppo delle isometrie è un gruppo non commutativo. Si osserva infatti, per esempio, che componendo nel piano una traslazione con una ... Leggi Tutto
TAGS: STRUTTURA ALGEBRICA – SIMMETRIA ASSIALE – COMMUTATIVO – TRASLAZIONI – ROTAZIONI

movimento

Enciclopedia on line

Biologia Mutamento della posizione di un organismo o di una sua parte rispetto all’ambiente. La capacità di muoversi è una delle caratteristiche fondamentali degli esseri viventi, di solito la manifestazione [...] nello spazio ordinario, da n(n+1)/2 parametri nell’iperspazio di dimensione n. Questo gruppo prende il nome di gruppo dei m.: esso è un gruppo misto, non abeliano, composto di 2 schiere, quella dei m. diretti, che formano un sottogruppo, e quella dei ... Leggi Tutto
CATEGORIA: BIOINGEGNERIA – FISIOLOGIA GENERALE – GEOMETRIA – FISIOLOGIA UMANA – FISIOLOGIA COMPARATA – CONTABILITA – STORIA DELLE RELIGIONI – SOCIOLOGIA – STRUMENTI E TECNOLOGIA APPLICATA
TAGS: CHIESA CATTOLICA – CIGLIA VIBRATILI – SPERMATOZOI – PSICANALISI – IPERSPAZIO
1 2 3 4 5 6 7 8 ... 10
Vocabolario
abeliano
abeliano agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali