Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] sviluppo della t. algebrica è la teoria dell’omologia a coefficienti appartenenti a un anello o a un gruppocommutativo (anziché all’anello degli interi).
T. differenziale
La t. differenziale si avvale dei metodi del calcolo differenziale. Essa ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] affini e le applicazioni lineari affini. Si arriva quindi allo studio delle matrici, considerate in particolare su un gruppocommutativo o su un anello e in relazione alle applicazioni lineari. Si discutono le matrici quadrate, diagonali, monomiali e ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] punti di una curva o di una varietà algebrica; studio di gruppi (finiti) di collineazioni e di omografie; studio dei k- quale V è un ‘modulo’; la somma è cioè associativa e commutativa, esiste l’elemento neutro 0 (vettore nullo) ed esiste l’opposto ...
Leggi Tutto
Biologia
G. sanguigni
Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni).
G. tissutali
Insieme di individui istocompatibili, tra [...] in quella additiva), il g. si dice abeliano o commutativo; in tal caso si adotta abitualmente la scrittura additiva.
Esempi G è generato, si chiama un sistema di generatori.
Caratteri di un gruppo
Dato un g. abeliano G, finito, di elementi a1, a2, ...
Leggi Tutto
In matematica, la corrispondenza generata tra due catene di un complesso, e più in generale tra due applicazioni, quando la prima può deformarsi con continuità nella seconda.
La teoria dell’o. costituisce [...] o. di dimensione qualunque n>1 di uno spazio topologico T. A differenza del gruppo fondamentale, essi sono sempre commutativi: si indicano con il simbolo πn(T) e si definiscono a partire dalle applicazioni di una superficie sferica n-dimensionale ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] -von Neumann è stato il primo teorema non banale di struttura per una rappresentazione unitaria infinito-dimensionale di un gruppo non commutativo e per tale ragione rappresenta un prototipo molto importante per la teoria infinito-dimensionale dei ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] caso non euclideo neppure formano un gruppo ‒ costituiscono un sottogruppo normale. La maggiore semplicità della geometria euclidea si deve alla presenza di un ampio sottogruppo commutativo e questa caratteristica, sorprendentemente, rappresenterebbe ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] bivariante di Kasparov. Un esempio fondamentale di algebra C* al quale si applica la teoria è l'anello di gruppo di un gruppo discreto; quindi non è certo opportuno limitarsi ad algebre commutative. Sia A un'algebra C*, e siano K0(A) e K1(A) i suoi ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] dalle classi di coomologia di grado pari. È questo un anello commutativo con unità 1∈H0(V). Per comprendere come la struttura Γ) è l'insieme dei lati di Γ, si consideri la cella
Il gruppo (finito) Aut(Γ) degli automorfismi di Γ agisce su cΓ e si ...
Leggi Tutto
commutativo
agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...