• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
24 risultati
Tutti i risultati [74]
Matematica [24]
Fisica [13]
Algebra [7]
Fisica matematica [8]
Analisi matematica [6]
Temi generali [5]
Geometria [4]
Geofisica [3]
Relativita e gravitazione [3]
Economia [3]

Calcolo delle variazioni

Enciclopedia Italiana - VII Appendice (2006)

Il c. delle v. è quell'area della matematica definita dal seguente problema: determinare, in una famiglia assegnata di oggetti, quello che rende minima (oppure massima) una certa grandezza. Gli oggetti [...] il valore di E deve risolvere una ben precisa equazione differenziale, vale a dire che u verifica un'identità che in generale possibile risolvere l'equazione di Eulero-Lagrange associata al problema, e lo schema di soluzione delineato non può essere ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – EQUAZIONE DI EULERO-LAGRANGE – EQUAZIONE DIFFERENZIALE – TEORIA DELLA RELATIVITÀ – LENTE GRAVITAZIONALE
Mostra altri risultati Nascondi altri risultati su Calcolo delle variazioni (4)
Mostra Tutti

VARIETÀ

Enciclopedia Italiana - III Appendice (1961)

VARIETÀ (App. II, 11, p. 1089) Edoardo Vesentini In geometria il termine v. è comunemente inteso in due differenti accezioni: v. algebrica (per la quale rinviamo alla voce geometria: Geometria algebrica, [...] sia alternato (cioè tale che e soddisfi l'identità di Jacobi per ogni terna di elementi t1, t2, t3 di &scr;T???(X). Un operatore siffatto è espresso dalla parentesi di Poisson, la quale associa ad ogni coppia di campi di vettori t1 e t2 il campo ... Leggi Tutto
TAGS: DETERMINANTE JACOBIANO – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – SPAZIO VETTORIALE – SPAZIO PROIETTIVO
Mostra altri risultati Nascondi altri risultati su VARIETÀ (6)
Mostra Tutti

COMBINATORIA, ANALISI

Enciclopedia Italiana - IV Appendice (1978)

Lo scopo principale dell'a. c. consiste nello studio di raggruppamenti di elementi in insiemi. Di norma, si ha soltanto un numero finito di elementi e i raggruppamenti debbono soddisfare condizioni particolari [...] di esclusione, il principio di Dirichlet e il teorema di Ramsey, la teoria delle identità combinatorie La congettura di Eulero è vera per n = 6. Tuttavia, un teorema di Bose, Shrikande e Parker (1960) dimostra l'esistenza di quadrati grecolatini per ... Leggi Tutto
TAGS: APPROSSIMAZIONE DIOFANTEA – CALCOLO DELLE PROBABILITÀ – FUNZIONI GENERATRICI – MATRICE DI HADAMARD – TEORIA DEI NUMERI
Mostra altri risultati Nascondi altri risultati su COMBINATORIA, ANALISI (4)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] moltiplicazione. Una identità analoga alla precedente si utilizza per moltiplicare somme di quattro quadrati; la sua scoperta, avvenuta prima di quella dei quaternioni di Hamilton, che servono a spiegarla, è dovuta a Eulero. I numeri di Cayley, che ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] =1 e χ è l'unico carattere modulo 1 che è identica- mente 1, allora L(s, χ) è la funzione zeta di Riemann. In generale L(s, χ) si rappresenta mediante il seguente prodotto euleriano: dove il prodotto è esteso a tutti i primi. È possibile sviluppare ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] (50) implica ∫Mkω1⋀ω2=2π•χ(M), (54) dove χ(M) è il numero di Eulero di M. Se suddividiamo M in f triangoli (o facce) e otteniamo v vertici ed e spigoli differenziale; essa fa uso delle identità di Bianchi sulla curvatura anziché del cobordismo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] Così non vi è alcuna difficoltà se P = − Δ + identità, perché in tal caso la (19) dà È, tuttavia indica il prodotto scalare di cui è dotata la coppia di spazi V′ e V; le disequazioni (23) generalizzano le equazioni di Eulero. Esempio 1: problema ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] per descrivere il flusso stazionario di un fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] come agevolmente si deduce da [12] facendo ricorso alle equazioni di Eulero (v. variazioni, calcolo delle, XXXIV, p. 1005), e ???j risultano invertibili. Il tensore di Riemann soddisfa alle "identità di Bianchi": ???lRhkij + ???iRhkjl + ???jRhkli ≡ ... Leggi Tutto

tangente

Dizionario delle Scienze Fisiche (1996)

tangente tangènte [agg. e s.f. Der. del part. pres. tangens -entis del lat. tangere "toccare"] [ALG] Di ente (retta, linea, superficie, ecc.) che abbia un particolare comportamento con altro ente della [...] trigonometrica di un angolo α: funzione trigonometrica, di simb. tan, collegata al seno e al coseno di α dall'identità tanα grafica (v. fig.) del metodo di Newton-Eulero, o di Eulero, di risoluzione numerica di equazioni lineari: v. calcolo numerico: ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su tangente (2)
Mostra Tutti
1 2 3
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali