• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
Le parole valgono
lingua italiana
255 risultati
Tutti i risultati [1949]
Matematica [255]
Biografie [211]
Fisica [183]
Filosofia [175]
Temi generali [153]
Lingua [126]
Arti visive [104]
Letteratura [87]
Fisica matematica [76]
Diritto [81]

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] riflessione; f(z) e g(z) sono due arbitrari polinomi, e infine Λ e Γ sono due operatori integro-differenziali, dipendenti da u1(x) (45) e (42)). Tale comportamento si ottiene combinando insieme quelli fin qui descritti. Dunque nel remoto futuro ogni ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Scienza greco-romana. La geometria da Apollonio a Eutocio

Storia della Scienza (2001)

Scienza greco-romana. La geometria da Apollonio a Eutocio Reviel Netz La geometria da Apollonio a Eutocio Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] rette massime (ogni altra conica ha rami che si estendono all’infinito, per cui nessuna retta da un punto del piano alla conica ’analisi’ riferendosi a un ambito di conoscenze o a un insieme di testi; in quest’ultimo caso il Libro VII sarebbe, ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] α ∈ C. Per K = R può essere che risulti σ (A) = ∅, come mostra l'esempio (x, y) → (y, x). Infine indichiamo con ρ (A) = Cσ (A) l'‛insieme risolvente' di A; infatti per λ ∈ ρ (A), esiste l'inversa (λ - A)-1, cioè è sempre e univocamente risolubile l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La civiltà islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi Marouane Ben Miled La tradizione araba del Libro X degli Elementi La storia delle letture [...] commenti, che però non sono stati sin qui reperiti. Bisogna infine citare un commento anonimo, risalente a prima della metà del Le quantità irrazionali si erano ormai affermate e intervenivano insieme ai numeri nei libri di aritmetica e di algebra. ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] binarie a discriminante negativo −d (l'insieme delle forme quadratiche binarie del tipo aX2+ ,q>0 interi ammetta un numero finito di soluzioni se ε>0 e un numero infinito di soluzioni se ε⟨0. Nel 1909 Axel Thue dimostrò che ϑ≤(n/2)+1, e ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] principio secondo cui un'onda o un pacchetto d'onda si muove insieme all'elettrone. Se scriviamo la nostra onda in forma complessa ψ = la creazione dello stato a, la sua transizione in b e, infine, l'annichilazione di b nel vuoto. 8. La vita propria ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

Scienza greco-romana. Archimede

Storia della Scienza (2001)

Scienza greco-romana. Archimede Reviel Netz Archimede Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] proposizione del Metodo sui teoremi meccanici a Eratostene (Tav. II), per cercare infine una risposta alle questioni che i due gruppi di problemi fanno nascere insieme. Qui siamo di fronte a ricerche matematiche ancora più avanzate, come in genere ... Leggi Tutto
CATEGORIA: BIOGRAFIE – STORIA DELLA MATEMATICA

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria Emily Grosholz La rivoluzione cartesiana e gli sviluppi della geometria La rivoluzione [...] una trasformazione dell'utilizzazione di questa disciplina, insieme con un cambiamento del suo oggetto. Sebbene all l'uso di almeno qualche sezione conica e che i rimanenti, infine, abbisognano di qualche altra linea più composta. Mi stupisce però ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] i=2R il tempo medio di ricorrenza è 22R. Processi di Markov a tempi discreti con un insieme numerabile di stati conducono a matrici stocastiche infinite che sono molto più difficili da studiare, perché la teoria spettrale per questo tipo di matrici è ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] superficie sferica, una condizione esprimibile soltanto con una disequazione. Infine, se i vincoli non dipendono dal tempo si parla di Moreau de Maupertuis ‒ l'altro 'inventore' del principio, insieme a Euler ‒ aveva coltivato e suscitato; non si può ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO
1 2 3 4 5 6 7 8 ... 15 ... 26
Vocabolario
infinito
infinito agg. e s. m. [dal lat. infinitus, comp. di in-2 e finitus, part. pass. di finire «limitare»]. – 1. agg. a. Che non ha principio né fine; che non ha limiti: il tempo i.; lo spazio i.; la misericordia di Dio è i.; i. silenzio (Leopardi)....
insième
insieme insième (ant. insème) avv. e s. m. [lat. ĭnsĕmul, rifatto nel lat. volg. in *insĕmel per sostituzione di semel «una volta» a simul «insieme»]. – 1. avv. Esprime in genere i seguenti rapporti: a. Compagnia, unione: siamo usciti i. io...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali