L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] esempio che chiarisce alcuni aspetti importanti del teorema fondamentale dell'algebra; esso riguarda la natura dei numeri reali e della una funzione continua, negativa in un punto del suo insieme di definizione e positiva in un altro, debba ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] punto con una linea retta e, quindi, l'insieme dei punti di una curva con un insieme di rette che determinano così, con il loro inviluppo, una nuova curva detta duale. Se la prima curva è algebrica, risulta algebrica anche la curva duale e ci si può ...
Leggi Tutto
Giochi, teoria dei
Dario Fürst
1. Introduzione e cenni storici
La teoria dei giochi venne presentata per la prima volta, con questo nome e in modo sufficientemente organico, nel celebre trattato del [...] una coppia di numeri, di cui il primo indica il guadagno (algebrico) del giocatore I e il secondo quello del II. Il gioco accennato consiste in questo: due fidanzati vogliono uscire insieme una certa sera, ma lui preferisce andare al cinema e lei a ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] di vista assiomatico e insiemistico. Dedekind introduce la nozione fondamentale di campo (Körper) di numeri, cioè di un insieme di numeri complessi algebrici chiuso rispetto alle quattro operazioni. Per esempio, i numeri della forma a+b√5, con a e b ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] Cantor e Dedekind, con il quale era entrato in corrispondenza, a classificare gli insiemi infiniti secondo la loro 'potenza' ‒ insiemi numerabili come i numeri razionali e i numeri algebrici, che si potevano mettere in corrispondenza biunivoca con l ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] dei suoi diversi elementi e dall'ordine in cui sono dati" (Cantor 1895, p. 282). Gli insiemi non sono dunque definiti da condizioni algebriche o analitiche, sono collezioni arbitrarie di oggetti astratti riunite in un tutto da un atto di pensiero ...
Leggi Tutto
L'Universo matematico
John D. Barrow
(Astronomy Centre, University of Sussex, Brighton, Gran Bretagna)
Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] sulle differenti strutture algebriche che vengono generate dai diversi insiemi di assiomi e un calcolo o come a una conseguenza di leggi della natura. 0, mettendo insieme i due concetti, se sia il caso di trattare le leggi della natura ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] oggi sarebbe considerata solo una parte della combinatoria, e cioè la parte che riguarda l'enumerazione, l'algebra e gli insiemi ordinati (in particolare i numeri uno e cinque della Mathematical Subject Classification).
Tali contributi sono stati di ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] della disuguaglianza di Liouville [24] si è sviluppata la teoria dei numeri trascendenti. I numeri algebrici costituiscono un insieme numerabile, dunque 'quasi tutti' i numeri sono trascendenti, tuttavia dimostrare la trascendenza di un particolare ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] primo, dovuto a René Descartes (1596-1650), consiste nel tradurre le nozioni geometriche in nozioni algebriche. Dunque, per esempio, una curva algebrica piana C non è altro che l'insieme degli zeri di un polinomio P(x,y) di due variabili reali x e y ...
Leggi Tutto
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...