• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
5 risultati
Tutti i risultati [71]
Storia della matematica [5]
Matematica [28]
Geometria [11]
Fisica [8]
Temi generali [5]
Analisi matematica [6]
Algebra [5]
Statistica e calcolo delle probabilita [3]
Fisica matematica [3]
Meccanica dei fluidi [4]

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] V di X tale che la relazione (x,y)∈V implica (f(x), f(y))∈V′. Le strutture uniformi possono essere confrontate. Dato uno spazio uniforme X e un intorno V di X, si dice che una parte A di X è un insieme piccolo di ordine V se A×A⊂V. Un filtro F su uno ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] dimensione r. Il metodo appena descritto fornisce allora uno spazio delle orbite M di dimensione p-r, che in un intorno infinitesimo di un punto è simile allo spazio ma che globalmente ha proprietà che riflettono quelle del gruppo. Cartan sceglie un ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] valori arbitrari per x0, per y e dy/dx in x0, esistono due soluzioni in serie di potenze linearmente indipendenti valide in un certo intorno di x0 e un'unica combinazione di esse che prende i valori dati per y e dy/dx in x0. Così i coefficienti α ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] della teoria degli insiemi come l'unione e l'intersezione, il concetto di insieme aperto (un'unione di intervalli aperti) e l'intorno di un punto (un aperto contenente il punto). Il fatto che P(ν+1)⊆P(n) rese possibile la definizione di derivato ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] è definito usando disuguaglianze con un numero finito di funzionali lineari continui per caratterizzare i punti x appartenenti all'intorno. Von Neumann sottolineò, e illustrò con un esempio, che nella topologia debole dello spazio di Hilbert un punto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
Vocabolario
intorniare
intorniare (ant. intornare e intorneare) v. tr. [der. di intorno1] (io intórnio, ecc.), letter. – Circondare, attorniare: la qual [acqua] ... per occulta via del pratello usciva, e per canaletti assai belli ... tutto lo ’ntorniava (Boccaccio);...
intórno¹
intorno1 intórno1 avv. [comp. di in-1 e torno1]. – 1. In giro, in posizione o con movimento pressappoco circolare: c’era gran folla i.; aveva molta gente i.; volgere lo sguardo, muovere gli occhi i.; con valore aggettivale: i luoghi intorno,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali