• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
9 risultati
Tutti i risultati [151]
Geometria [9]
Matematica [55]
Algebra [18]
Fisica [17]
Fisica matematica [10]
Storia della matematica [9]
Analisi matematica [8]
Filosofia [8]
Storia della fisica [7]
Chimica [6]

varieta complessa

Enciclopedia della Scienza e della Tecnica (2008)

varietà complessa Gilberto Bini Una varietà complessa di dimensione complessa n è uno spazio topologico separato ricoperto (con sovrapposizioni) da un insieme numerabile di sottoinsiemi Vα, detti intorni [...] coordinati, ciascuno dei quali è analiticamente isomorfo a un aperto connesso di ℂn. Mediante questa corrispondenza biunivoca si introducono su Vα delle funzioni coordinate (zα1,...,zαn) che corrispondono a (z1,...,zn). Dato che alcuni punti della ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: INSIEME NUMERABILE – GEOMETRIA – ISOMORFO – INTORNI
Mostra altri risultati Nascondi altri risultati su varieta complessa (6)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] ' di X, e inoltre dim I (X) = κ e vi è un'unica applicazione razionale f : X → I (X). Se κ = dim X, allora I (X) è birazionalmente isomorfo a X, e in tal caso si dice che X è una varietà di tipo generale. Poiché I (X) è unico a meno di trasformazioni ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

spazio analitico

Enciclopedia della Scienza e della Tecnica (2008)

spazio analitico Gilberto Bini Un fascio ℱ su uno spazio topologico X è l’unione di una famiglia di gruppi abeliani (o anelli, o moduli) ℱx, uno per ogni punto x di X, che chiameremo spighe. Denotando [...] OS la restrizione di O/ℒ a S, e chiameremo la coppia (S,OS) un modello locale di uno spazio analitico. Dire che X è localmente isomorfo a un modello locale significa che, per ogni punto x∈X, esistono: (a) un intorno A di x∈X; (b) un modello locale (S ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] di M con coefficienti nel fascio delle funzioni costanti (a valori complessi). L'analogo complesso del teorema di de Rham è il seguente isomorfismo di Dolbeault: Hp,q(M;C)≅Hq(M;Ωp). (52) I teoremi di de Rham e di Dolbeault sono fondamentali per usare ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

omologia

Enciclopedia on line

Conformità o equivalenza tra più parti, termini, elementi. Biologia Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] ogni ciclo che non divida in parti S′ è una combinazione lineare dei cicli indicati: il gruppo di o. unidimensionale di S′ è isomorfo alla somma diretta di quattro copie del gruppo additivo Z degli interi, cioè H1(S′)∿4Z. Si osservi ora che una linea ... Leggi Tutto
CATEGORIA: SISTEMATICA E BIOLOGIA DELL EVOLUZIONE – TEMI GENERALI – ECOLOGIA VEGETALE E FITOGEOGRAFIA – GEOGRAFIA FISICA – ALGEBRA – GEOMETRIA – ECOLOGIA ANIMALE E ZOOGEOGRAFIA – ETOLOGIA
TAGS: TEORIA DELLE CATEGORIE – ARCIPELAGO BRITANNICO – DERIVA DEI CONTINENTI – CLASSI DI EQUIVALENZA – COMPLESSI SIMPLICIALI
Mostra altri risultati Nascondi altri risultati su omologia (2)
Mostra Tutti

rappresentazione

Enciclopedia on line

L’attività e l’operazione di rappresentare con figure, segni e simboli sensibili, o con processi vari, anche non materiali, oggetti o aspetti della realtà, fatti e valori astratti, e quanto viene così [...] (o anche solo omomorfo) a un assegnato sistema algebrico: a) ogni gruppo finito è isomorfo a un gruppo di permutazioni (teorema di Cayley); b) ogni algebra di Boole è isomorfa a un’algebra di Boole ‘concreta’ cioè all’insieme P(E) costituito dalle ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA – DOTTRINE TEORIE E CONCETTI – METAFISICA
TAGS: MECCANICA QUANTISTICA – OPERATORI HERMITIANI – SPAZIO VETTORIALE – SPAZIO DI HILBERT – OPERATORI LINEARI
Mostra altri risultati Nascondi altri risultati su rappresentazione (3)
Mostra Tutti

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] l'azione di tale gruppo sullo spazio normale all'orbita e Luna prova che il quoziente di questa azione è analiticamente isomorfo alla varietà V//G nell'intorno di P. In un'altra direzione, George Kempf (1978) studia i sottogruppi ad un parametro ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] x e y arbitrari in L, dove e è l'identità dell'algebra. E(L) è l'algebra infinitesimale di Weyl ed è isomorfo all'algebra generata dall'insieme di operatori canonici p1, ..., pn, e q1, ..., qn della meccanica quantistica, dove 2n è la dimensione di L ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] X i gruppi di omotopia πn(X) sono nulli per 1≤n≤N per un certo N>1, allora Hn(X) è nullo per 1≤n≤N e πN+1(X) è isomorfo a HN+1(X). Se uno spazio ha πn(X)={0} per 2≤n≤N per qualche N>2, allora i gruppi di omologia Hn(X) per 2≤n≤N sono invarianti ... Leggi Tutto
CATEGORIA: GEOMETRIA
Vocabolario
iṡomòrfo
isomorfo iṡomòrfo agg. [comp. di iso- e -morfo]. – 1. In genere, che ha forma uguale, o che è costituito da elementi di uguale forma. 2. In cristallochimica, di composto che presenta isomorfismo. Miscele i., quelle formate da sostanze cristalline...
iṡomòrfico
isomorfico iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali