Pontrjagin Lev Semenovic
Pontrjagin (o Pontryagin) 〈pantriàg✄in〉 Lev Semenovič [STF] (n. Mosca 1908) Prof. di matematica nell'univ. di Mosca (1935). ◆ [ALG] Classi di P.: una delle classificazioni dei [...] , teoria del: I 749 f. ◆ [ANM] Teorema, o principio, di dualità di P.: afferma che ogni gruppo abeliano localmente compatto è isomorfo al gruppo dei suoi caratteri: v. algebre di operatori: I 94 d. ◆ [ALG] Teorema di P. e Thom: → Whitney, Hassler ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] (T) è allora il sottospazio di E che consiste delle x=∑nxn con xn∈En tali che ∑n∥T∙xn∥2〈+∞. Ciascuno degli En è allora isomorfo a uno spazio L2ℂ(Xn,μn), dove Xn è un sottoinsieme limitato di X e μn è una misura positiva su Xn, e la restrizione di T ...
Leggi Tutto
rappresentazione
rappresentazióne [Der. del lat. repraesentatio -onis, dal part. pass. repraesentatus del lat. repraesentare "rappresentare", comp. di re- "di nuovo" e praesentare "presentare"] [ALG] [...] degli: III 287 c. ◆ [ALG] Problema della r.: consiste nella ricerca di un gruppo, un anello, un campo, ecc. che sia isomorfo (o anche solo omomorfo) a un assegnato sistema algebrico. ◆ [ALG] Teoria delle r.: v. gruppi, rappresentazione dei: III 120 e ...
Leggi Tutto
spazio
spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] dati. ◆ [ASF] S. interstellare: la parte dell'Universo non occupata da materia condensata in stelle e altri astri. ◆ [PRB] S. isomorfo: v. probabilità classica: IV 582 c. ◆ [ALG] S. lineare: lo stesso, a seconda dei casi, di s. proiettivo o di ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] reali, per quanto ora esposto, per il teorema di Schwarz e per la distributività della derivazione, Ω risulta un anello commutativo isomorfo all’anello dei polinomi in due indeterminate sul corpo dei numeri reali. Quindi, posto d=Δx∂/∂x+Δy∂/∂y (dove ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] T in T (H), una forma lineare continua ωT su L (H) data da S → Sp (ST). L'applicazione T in T (H) → ωT è un isomorfismo isometrico di L (H) sullo spazio duale T (H)′ di T (H). L'identificazione L (H) = T (H)′ porta con sé la topologia w* data dalla ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] , le proprietà aritmetiche di k si riflettono in proprietà del gruppo di Galois G di K su k, che è abeliano e isomorfo a Cm. Hecke dimostrò nel 1917 che le funzioni L di Weber soddisfano un'equazione funzionale, e che sono funzioni intere nel ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] da un elemento algebrico. Doveva contenere tutti i coniugati di tale elemento e il suo gruppo di Galois su K doveva essere isomorfo al gruppo delle classi di ideali di K; nessun ideale di K doveva essere divisibile per il quadrato di un ideale primo ...
Leggi Tutto
isomorfo
iṡomòrfo agg. [comp. di iso- e -morfo]. – 1. In genere, che ha forma uguale, o che è costituito da elementi di uguale forma. 2. In cristallochimica, di composto che presenta isomorfismo. Miscele i., quelle formate da sostanze cristalline...
isomorfico
iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...