• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
13 risultati
Tutti i risultati [235]
Geometria [13]
Matematica [49]
Biologia [35]
Medicina [23]
Chimica [22]
Fisica [21]
Temi generali [20]
Ingegneria [13]
Economia [14]
Analisi matematica [13]

Geometria differenziale

Enciclopedia del Novecento II Supplemento (1998)

Geometria differenziale Simon M. Salamon SOMMARIO: 1. Introduzione: le origini.  2. Proprietà delle superfici.  3. Studio della curvatura gaussiana.  4. Dimensioni superiori.  5. Varietà e topologia.  [...] un indice ripetuto in ogni addendo (in questo caso ‛r') sostituisce una sommatoria (Σr). I coefficienti gkr sono gli elementi della matrice inversa di (5) e sono dati da ∣g∣-1 ∂ ∣g ∣/∂ grk. Dall'equazione K = ∣h∣/∣g∣ si deduce la seconda formula ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – GILLES PERSONNE DE ROBERVAL – SPAZIO DELLE CONFIGURAZIONI – POSTULATO DELLE PARALLELE – EQUAZIONE DI QUARTO GRADO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] moltiplicativa su H2*(V) si fissi una base [U0],…,[UN] di H2*(V), si ponga e si denoti con (gij) la matrice inversa della matrice (gij). Si verifica allora che la moltiplicazione in H2*(V), indotta per dualità di Poincaré da quella in H2*(V), è ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] le proprietà fondamentali dell'algebra delle matrici: somma e prodotto di matrici, moltiplicazione di una matrice per uno scalare e condizioni per l'esistenza di una matrice inversa A-1. La teoria delle matrici si evolverà in stretta relazione con ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

tensore di Ricci

Enciclopedia della Scienza e della Tecnica (2008)

tensore di Ricci Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] un indice ripetuto in ogni addendo (in questo caso ‘r’) sostituisce una sommatoria (∑r). I coefficienti gkl sono gli elementi della matrice inversa di gkl. È degno di nota il fatto che i tensori Rij e gij siano esattamente dello stesso tipo: sono ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANA – METRICA EUCLIDEA – SPAZIO EUCLIDEO – MATRICE INVERSA
Mostra altri risultati Nascondi altri risultati su tensore di Ricci (1)
Mostra Tutti

simboli di Christoffel

Enciclopedia della Scienza e della Tecnica (2008)

simboli di Christoffel Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma dove (gik) è una matrice n×n hermitiana definita [...] in ogni addendo (in questo caso ‘r’) sostituisce una sommatoria ∑r. I coefficienti gkr sono gli elementi della matrice inversa di gkr. I simboli di Christoffel permettono di definire la connessione di Levi-Civita, un operatore molto importante che ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – MATRICE INVERSA – TENSORI
Mostra altri risultati Nascondi altri risultati su simboli di Christoffel (1)
Mostra Tutti

omografia

Enciclopedia on line

In geometria, corrispondenza biunivoca senza eccezioni tra gli elementi (di solito i punti) che costituiscono due spazi proiettivi Pn e P′n aventi la stessa dimensione, la quale faccia corrispondere a [...] in P′n, ρ è un fattore non nullo e la matrice quadrata dei coefficienti aij è non degenere, cioè ha determinante diverso l’o. di equazioni ρx′i=xi (i=0, 1, …, n), l’inversa della [1] è quella che si ottiene risolvendo il sistema [1] rispetto alle ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CORRISPONDENZA BIUNIVOCA – COORDINATE OMOGENEE – SPAZIO VETTORIALE – OPERATORI LINEARI – MATRICE QUADRATA
Mostra altri risultati Nascondi altri risultati su omografia (1)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] almeno 2. Se P appartiene a Z, allora l'applicazione inversa contrae in P una sottovarietà connessa f(P) di dimensione Γ0 (N), dove Γ0 (N) è il sottogruppo di SL(2), formato dalle matrici tali che N divide c. Qui N è il ‛conduttore' di E, ossia è ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] che si ottiene, ristretta a M={a,b}, è quella delle matrici 2×2: In altre parole, non richiediamo che due funzioni abbiano ds ha la dimensione di una lunghezza, D ha la dimensione dell'inversa di una lunghezza e l'espressione [60] per d(x,y) ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] algebra che si ottiene, ristretta a M={a,b}, è quella delle matrici 2×2: [6] formula. In altre parole, non richiediamo che due ds ha la dimensione di una lunghezza, D ha la dimensione dell'inversa di una lunghezza e l'espressione [60] per d(x,y) ha ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti
1 2
Vocabolario
punzóne
punzone punzóne s. m. [lat. punctio -ōnis «puntura», der. di pungĕre «pungere», part. pass. punctus]. – 1. tosc. e letter. Forte colpo dato col pugno o con la mano aperta: fattoglisi incontro, gli diè nel viso un gran p. (Boccaccio); Orlando...
sottrazióne
sottrazione sottrazióne s. f. [dal lat. tardo subtractio -onis, der. di subtrahĕre «sottrarre»]. – 1. L’atto del sottrarre, del portare via: s. di denari, di documenti; s. con furto, con raggiro, con la frode. In diritto penale, attività delittuosa...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali