• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
15 risultati
Tutti i risultati [33]
Matematica [15]
Geometria [6]
Analisi matematica [5]
Fisica [4]
Fisica matematica [2]
Algebra [3]
Fisica nucleare [2]
Biologia [3]
Storia della fisica [2]
Temi generali [2]

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] si può esprimere nella forma ds2=2Σgj-kdzjdÿk, (43) dove (gj-k) è una matrice n×n hermitiana definita positiva che dipende da z1, ..., zn. La connessione di Levi-Civita di M, cioè la differenziazione covariante ???30??? su M come varietà riemanniana ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] spazio lineare n-dimensionale e l'operatore lineare A definito da una matrice quadrata di ordine n. Il lavoro di Fredholm attirò l'attenzione di è il coniugato di aij (forma simmetrica hermitiana). Imponendo alla forma bilineare una condizione di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

traccia

Enciclopedia della Scienza e della Tecnica (2008)

traccia Luca Tomassini Nel caso di un operatore lineare (matrice quadrata) di uno spazio vettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] +βB)=αtrA+βtrB (linearità); (b) trAB=trBA; (c) trA*A≥0 (positività). Il simbolo A* indica la matrice coniugata hermitiana di A. Se A è hermitiana (A=A*), trA è uguale alla somma dei suoi autovalori. La generalizzazione del concetto di traccia al caso ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE EUCLIDEO – OPERATORE HERMITIANO – SPAZIO DI HILBERT – OPERATORE LINEARE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su traccia (4)
Mostra Tutti

varieta kahleriana

Enciclopedia della Scienza e della Tecnica (2008)

varietà kähleriana Gilberto Bini Una metrica riemanniana su una varietà complessa M è detta hermitiana se definisce un prodotto interno hermitiano su ciascuno spazio tangente. Una metrica hermitiana [...] una matrice n×n hermiti ana definita positiva che dipende da z1,...,zn. La connessione di Levi-Civita di M (vista come varietà riemanniana) può conservare, opppure non conservare, la struttura complessa di M; quando la conserva, la metrica hermitiana ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – VARIETÀ KÄHLERIANA – VARIETÀ COMPLESSA

simboli di Christoffel

Enciclopedia della Scienza e della Tecnica (2008)

simboli di Christoffel Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma dove (gik) è una matrice n×n hermitiana definita [...] in ogni addendo (in questo caso ‘r’) sostituisce una sommatoria ∑r. I coefficienti gkr sono gli elementi della matrice inversa di gkr. I simboli di Christoffel permettono di definire la connessione di Levi-Civita, un operatore molto importante che ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – MATRICE INVERSA – TENSORI
Mostra altri risultati Nascondi altri risultati su simboli di Christoffel (1)
Mostra Tutti
1 2
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali