• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
22 risultati
Tutti i risultati [156]
Fisica matematica [22]
Matematica [65]
Fisica [46]
Storia della matematica [29]
Filosofia [21]
Storia della fisica [24]
Geometria [14]
Temi generali [16]
Statistica e calcolo delle probabilita [11]
Astronomia [11]

meccanica

Enciclopedia on line

Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] poi di considerazioni topologiche: come, per es., nella teoria di Poincaré per i sistemi di equazioni temporale di un’osservabile è uguale alla sua media sulla superficie di energia costante». Essa è la base euristica del modello microcanonico ... Leggi Tutto
CATEGORIA: DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA
TAGS: LEGGE DELLA GRAVITAZIONE UNIVERSALE – EQUAZIONE ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – LUNGHEZZA D’ONDA DI DE BROGLIE – SCIENZA DELLE COSTRUZIONI
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

simmetria

Enciclopedia on line

simmetria Distribuzione ordinata delle parti di un oggetto tale che si possa individuare un elemento geometrico (un punto, una linea, una superficie) rispetto al quale a ogni punto dell’oggetto posto da [...] , invariante, di elementi di un assetto o di un sistema. Biologia Modello geometrico cui di struttura del gruppo di simmetria. Le simmetrie continue di cui tutte le interazioni fondamentali godono sono quelle rispetto alle trasformazioni di Poincaré ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – TECNICHE E STRUMENTI – TEMI GENERALI – ANATOMIA MORFOLOGIA CITOLOGIA – FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMORFOLOGIA – GEOMETRIA – ANATOMIA COMPARATA
TAGS: INTERAZIONI ELETTRODEBOLI – INTERAZIONI FONDAMENTALI – MECCANICA QUANTISTICA – TRIANGOLO EQUILATERO – GRUPPO DI SIMMETRIA
Mostra altri risultati Nascondi altri risultati su simmetria (4)
Mostra Tutti

Fisica matematica

Enciclopedia Italiana - VI Appendice (2000)

Fisica matematica Andrei Tjurin Vieri Mastropietro L'interazione fra fisica e matematica è divenuta ancora più proficua negli ultimi anni. Nelle ricerche sulle interazioni fondamentali (gravitazionali, [...] di Kramers-Wanier nel modello di Ising. Applicazioni delle teorie di gauge alla geometria in dimensione bassa di Andrei Tjurin A partire dal 1982 la teoria di 1954). Memore dei risultati di Poincaré, Kolmogorov non tenta di dimostrare che tutti i moti ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
TAGS: TEOREMA DELLE FUNZIONI IMPLICITE – EQUAZIONI ALLE DERIVATE PARZIALI – ROTTURA SPONTANEA DI SIMMETRIA – TEORIE DI GRANDE UNIFICAZIONE – TEORIA DELLE RAPPRESENTAZIONI
Mostra altri risultati Nascondi altri risultati su Fisica matematica (3)
Mostra Tutti

Dinamica dei sistemi

Enciclopedia Italiana - VII Appendice (2006)

L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] , a meno di non ricorrere a modelli semianalitici, sviluppati sfruttando le ricerche di Laplace e, soprattutto, di Lagrange sulla struttura dello spazio delle fasi del sistema planetario, e i successivi lavori di Poincaré, che perfezionò ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI
TAGS: TEORIA GENERALE DEI SISTEMI – FISICA DELLO STATO SOLIDO – EQUILIBRIO TERMODINAMICO – VARIETÀ DIFFERENZIABILE – EQUAZIONI DIFFERENZIALI

La grande scienza. Cronologia scientifica: 1971-1980

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1971-1980 1971-1980 1971 I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] di gradi di libertà è maggiore questa limitazione sulle orbite non sussiste. Una generalizzazione del teorema di Poincaré- le scoperte relative all'organizzazione e all'evidenziazione di modelli di comportamento individuali e sociali. 1974 Nobel per ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] all'astronomia da G.I. Hori (1966). La congettura di Poincaré. Stephen Smale dimostra la famosa congettura per n≥5: una varietà differenziabile di dimensione n che ha la stessa omotopia di una sfera di dimensione n è omeomorfa a tale sfera. Questo ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] dinamica vicino alle omocline fosse 'caotica'. Le argomentazioni di Poincaré erano solamente formali e una buone parte del progresso si parla di modelli di spin). In questi modelli la dinamica è costituita da iterate di un'applicazione di Markov che ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] . Queste premesse sono importanti perché il testo di Lagrange fu un modello per la meccanica analitica della prima metà del analitica. Anche la Bildtheorie di Hertz, alla quale si riconnette la teoria di Poincaré, non sarebbe stata possibile ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Sistemi dinamici

Storia della Scienza (2003)

La grande scienza. Sistemi dinamici Valentin S. Afraimovich Leonid A. Bunimovich Jack K. Hale Sistemi dinamici Il nostro Universo è formato da oggetti che si muovono nello spazio e le cui caratteristiche [...] della chiarezza dell'esposizione. Per costruire un modello di un particolare sistema occorre definire in maniera accurata differenziale. In questo caso il numero di rotazione di fase è il numero di rotazione di Poincaré sul toro, e le caratteristiche ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

Caos

Enciclopedia del Novecento II Supplemento (1998)

Caos Robert L. Devaney Introduzione storica Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] aberrazione. Nel tentativo di spiegare le varietà di Poincaré, stabili e di processo iterativo non lineare è offerto dal problema della previsione di crescita o calo della popolazione di una certa specie. Il modello più semplice è il modello di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METEOROLOGIA – LOGICA MATEMATICA – MATEMATICA APPLICATA
TAGS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE ALLE DERIVATE PARZIALI – DIMENSIONE DI HAUSDORFF – FIOCCO DI NEVE DI KOCH
1 2 3
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali