• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
65 risultati
Tutti i risultati [156]
Matematica [65]
Fisica [46]
Storia della matematica [29]
Filosofia [21]
Storia della fisica [24]
Fisica matematica [22]
Geometria [14]
Temi generali [16]
Statistica e calcolo delle probabilita [11]
Astronomia [11]

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] stata originariamente formulata. Dieci anni più tardi, Jules-Henri Poincaré (1854-1912) può affermare che la geometria "non è altro che una storia di gruppi". Nel modello di Beltrami egli trova la chiave per interpretare geometricamente nel semipiano ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] (1908), vero punto di riferimento. L'attenzione di Poincaré si indirizzava al cosiddetto 'paradosso di Richard' del 1905 (dovuto Y) di sottoinsiemi Y di ℕ. Ora, l'estremo superiore di S (quando è superiormente limitato) è nel modello di Dedekind ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] col teorema di ricorrenza di Poincaré nella dinamica) e il tempo medio di ricorrenza (misurato dal numero di estrazioni) come pure il modello di Ehrenfest della ‛pulce del cane', sono esempi di processi di ‛nascita e morte', cioè di processi per i ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] . Queste premesse sono importanti perché il testo di Lagrange fu un modello per la meccanica analitica della prima metà del analitica. Anche la Bildtheorie di Hertz, alla quale si riconnette la teoria di Poincaré, non sarebbe stata possibile ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] è scoperto che le funzioni di partizione di numerosi modelli matematici di teoria dei campi possono si consideri come sottovarietà la retta L di equazione Z = 0. Si verifica che la classe duale di Poincaré di L è rappresentata dalla 2-forma dove x ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] un air de famille, e vanno quindi trattati con metodi comuni. Poincaré evidenziava inoltre l'interesse di avere a disposizione dimostrazioni rigorose, anche se i modelli sono soltanto un'approssimazione della realtà fisica. Ciò perché i matematici ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Sistemi dinamici. Origini e sviluppo

Enciclopedia della Scienza e della Tecnica (2007)

Sistemi dinamici. Origini e sviluppo Giovanni Jona-Lasinio La teoria dei sistemi dinamici è un settore della matematica pura e applicata che si è sviluppato intensamente a partire dagli anni Sessanta [...] settant'anni dopo i lavori di Poincaré. Dal canto suo la teoria ergodica, che cerca di analizzare i sistemi dinamici sistemi riconducibili a questi, mentre per modelli di un gas di particelle interagenti sono stati ottenuti risultati analoghi ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – TEMI GENERALI
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – ACCADEMIA NAZIONALE DEI LINCEI – SISTEMI DI EQUAZIONI LINEARI – DISTRIBUZIONE DI PROBABILITÀ – STATISTICAMENTE INDIPENDENTI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici. Origini e sviluppo (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] 1923), per ottenere il quale fu assistito dagli studenti di Klein e di Poincaré che venivano mandati ogni tanto a studiare da lui di Hilbert della geometria, che aveva portato allo studio di numerose geometrie che non possono avere come modello ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] geometria differenziale è una fonte di problemi ellittici non lineari di tipo variazionale. L'esempio tipico è un risultato di Poincaré che prova l'esistenza di metriche conformi tali che una varietà compatta di dimensione 2 abbia curvatura gaussiana ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Caos

Enciclopedia del Novecento II Supplemento (1998)

Caos Robert L. Devaney Introduzione storica Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] aberrazione. Nel tentativo di spiegare le varietà di Poincaré, stabili e di processo iterativo non lineare è offerto dal problema della previsione di crescita o calo della popolazione di una certa specie. Il modello più semplice è il modello di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METEOROLOGIA – LOGICA MATEMATICA – MATEMATICA APPLICATA
TAGS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE ALLE DERIVATE PARZIALI – DIMENSIONE DI HAUSDORFF – FIOCCO DI NEVE DI KOCH
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali