La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] e banale, del semplice trucco formale secondo cui una coppia di numeri reali x e y si possono fondere insieme in una singola quantità Lo studio delle equazioni differenziali della forma
(dove F è razionale in w′, algebrica in w e analitica in z) ...
Leggi Tutto
CREMONA, Luigi
U. Bottazzini
Lauro Rossi
Nacque a Pavia il 7 dic. 1830 da Gaudenzio, un novarese di famiglia assai agiata poi caduta in rovina, e da Teresa Andreoli. Ebbe tre fratelli tra i quali Tranquillo, [...] studio delle cubiche gobbe, per le quali egli stabilì un gran numero di teoremi e di proprietà. Si tratta di uno studio che curve di ordine n, che ammettono una rappresentazione parametrica razionale, formano una rete di curve tali che due qualunque ...
Leggi Tutto
BURALI FORTI, Cesare
Evandro Agazzi
Nacque ad Arezzo il 13 ag. 1861 da Cosimo e da Isoletta Guiducci. Dopo aver compiuto gli studi medi nel collegio militare di Firenze, s'iscrisse nel dicembre 1879 [...] Egli frequentò anche le lezioni di meccanica razionale, meccanica celeste e fisica matematica tenute dal 52; Sopra un teorema del sig. Cantor,ibid., pp. 153-161. Una questione sui numeri transfiniti, in Rend. d. Circ. mat. di Palermo, XI (1897)3 pp. ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Leonardo Fibonacci
Veronica Gavagna
Leonardo Fibonacci, noto anche come Leonardo Pisano, fu il matematico più importante nell’Occidente latino del 13° secolo. Le sue opere, che rappresentano una summa [...] pitagoriche, che preludono alla costruzione di una teoria dei numeri congrui, cioè dei numeri C per i quali il sistema delle due equazioni y2−C=x2 e y2+C=z2 ammette soluzioni intere o razionali.
Il Flos, dedicato al cardinale Raniero Capocci, notaio ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Paolo Ruffini
Francesco Barbieri
Franca Cattelani Degani
Paolo Ruffini, medico e matematico, deve la sua fama principalmente ai risultati ottenuti nel campo delle equazioni algebriche, anche se i suoi [...] , sempre con il procedimento a priori, dimostrò che una funzione razionale delle 5 radici dell’equazione, al permutarsi di queste, non metodo più breve e meno faticoso di trovare le radici numeriche di una equazione di grado qualunque». La medaglia d ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] elementi trascendenti). Con riguardo ai c. più elementarmente noti, se per es. C è il c. razionale, C- è il cosiddetto c. dei numeri algebrici (radici di equazioni a coefficienti razionali) e se C è invece il c. reale, C- è il c. complesso. Dire che ...
Leggi Tutto
CIPOLLA, Michele
Francesco Saverio Rossi
Nato a Palenno il 28 ott. 1880 da Luigi e da Rosaria Moncada, dopo aver seguito con onore, gli studi medi superiori nel liceo della sua città, iniziò quelli [...] matematica, IX[1903], pp. 113-60). Dal 1903 al 1906 si occupò ancora delle congruenze numeriche del tipo xn ≡ a (modulo p) (a e n interi positivi, p primo) e facendo uso di sole relazioni astrattamente razionali. Egli prese posizione fra i matematici ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] e y2, T(f)=F(y1,y2) con coefficienti bi che sono funzioni razionali, lineari nelle ai e di grado n nelle aij. Un'espressione algebrica n forma e (ab) rappresenta il determinante a1b2−a2b1. Il numero dei fattori a, b, c,… che compaiono nel prodotto ...
Leggi Tutto
empirismo
empirismo [Der. di empirico] [FAF] Atteggiamento epistemologico che pone nell'esperienza la fonte della conoscenza. Si oppone a innatismo e a razionalismo, le quali concezioni fanno derivare [...] delle ragioni vitali dell'e. e del suo opposto, il razionalismo. ◆ [ALG] [ANM] Nella matematica, l'e. è possono considerare, per es., come dotati di effettiva esistenza i numeri trascendenti, giacché essi sfuggono, in generale, alla possibilità di ...
Leggi Tutto
Matematico (Saint-Omer, Pas-de-Calais, 1809 - Parigi 1882). Fu uno dei maggiori analisti francesi del sec. 19º, ma anche un ottimo algebrista, geometra e fisico-matematico, con profondi interessi interdisciplinari. [...] dimostrazione (1851), avente carattere costruttivo, dell'esistenza di numeri trascendenti, cioè di numeri irrazionali che non sono radici di alcuna equazione algebrica a coefficienti razionali (teorema di L.); il teorema secondo cui una funzione ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
razionale1
razionale1 agg. [dal lat. rationalis, der. di ratio -onis «ragione»]. – 1. a. Che è fornito, che è dotato di ragione: anima, creatura r.; molti [animali], quasi come razionali ... la notte alle lor case senza alcuno correggimento...