• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
67 risultati
Tutti i risultati [524]
Algebra [67]
Matematica [175]
Storia della matematica [56]
Fisica [53]
Filosofia [47]
Temi generali [39]
Fisica matematica [35]
Analisi matematica [34]
Biologia [28]
Biografie [26]

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] Jordan; di conseguenza, nei lavori realizzati in Germania si presta maggiore attenzione ai 'campi' di numeri ottenuti aggiungendo ai numeri razionali le radici di un'equazione algebrica. Nel suo libro Wüssing mostra altresì come alcune delle radici ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] ∑n>kanpn, con 0≤an⟨p e k intero fissato e serie analoghe associate a fattori primi nei corpi di numeri. Qualsiasi numero razionale si può rappresentare con una serie di questo tipo, ma l'idea fondamentale di Hensel fu quella di considerare tali ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Trenta Leo Mordell congetturò che su una curva F(x,y)=0 di genere almeno 1, giace un numero finito di 'punti razionali' (punti le cui coordinate sono numeri razionali). In particolare, se n≥3 allora l'equazione di Fermat si trasforma in F(x,y)=xn+yn ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] frazioni. Si arriva così ai corpi, ai domini di integrità, agli ideali primi e finalmente al campo dei numeri razionali; infine si definiscono i limiti proiettivi e induttivi. Il secondo capitolo tratta l'algebra lineare. Introduce innanzi tutto ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] operazioni elementari senza restrizioni, eccetto la divisione per zero. I resti hanno dunque le stesse proprietà algebriche dei numeri razionali. Inoltre, i p−1 resti non nulli formano un gruppo ciclico rispetto alla moltiplicazione, generato da una ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

continuo e discreto

Enciclopedia dei ragazzi (2005)

continuo e discreto Paolo Zellini Un enigma che la matematica ha sempre cercato di risolvere Sono molte le domande che ci spingono a cercare una definizione del continuo. Lo spazio è composto di punti? [...] retta ci sono perciò dei punti ‒ infiniti punti! ‒ cui non corrisponde alcun numero razionale. Per ottenere il continuo occorre aggiungere ai numeri razionali i numeri come √2, che si chiamano irrazionali, stabilendo in questo modo una corrispondenza ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: CORRISPONDENZA BIUNIVOCA – NUMERI INTERI NATURALI – TEOREMA DI PITAGORA – PARADOSSI DI ZENONE – DISCRETO E CONTINUO

campi di numeri

Enciclopedia della Scienza e della Tecnica (2008)

Campi di numeri Massimo Bertolini Sia α un numero algebrico, cioè un numero complesso che soddisfa un’equazione algebrica p(x)=0, dove p(x) è un polinomio di grado n≥1 avente coefficienti nel campo [...] ℚ dei numeri razionali. L’insieme K = ℚ[α] di tutte le espressioni polinomiali in α a coefficienti in ℚ è un sottocampo del campo complesso ℂ, detto campo di numeri. Ciò significa che la somma e il prodotto di elementi di K appartengono a K; inoltre, ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL’ARITMETICA – TEOREMA DI KRONECKER-WEBER – FUNZIONE ESPONENZIALE – EQUAZIONE ALGEBRICA – ERNST EDUARD KUMMER

algebra non commutativa

Enciclopedia della Scienza e della Tecnica (2008)

algebra non commutativa Luca Tomassini Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] numeri razionali, reali e complessi) munito in aggiunta di un’applicazione (moltiplicazione) F×F→F che sia bilineare, cioè lineare in ognuno dei fattori considerati separatamente: (λx+μy)z = λ(xz) + μ(yz) x(λy+μz) = λ(xy) + μ(xz) per ogni x,y,z di A ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – APPLICAZIONI LINEARI – SPAZIO VETTORIALE – ALGEBRA LINEARE – ALGEBRE DI LIE
Mostra altri risultati Nascondi altri risultati su algebra non commutativa (4)
Mostra Tutti

campo delle frazioni

Enciclopedia della Scienza e della Tecnica (2008)

campo delle frazioni Luca Tomassini Sia D un dominio di integrità (cioè un anello abeliano nel quale a≠0 e b≠0 implica ab≠0, per ogni a,b∈D). Sussiste allora il seguente teorema: ogni dominio di integrità [...] Φ:D→F con la formula Φ(a)=[a,1]. Il più importante esempio di campo delle frazioni è senza dubbio quello dei numeri razionali ℚ. Il dominio di integrità di partenza è l’insieme ℤ degli interi relativi, il simbolo (a,b) è sostituito da a/b e non ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: RELAZIONE DI EQUIVALENZA – ANELLO DEI POLINOMI – ELEMENTO NEUTRO – ABELIANO
Mostra altri risultati Nascondi altri risultati su campo delle frazioni (1)
Mostra Tutti

divisione

Dizionario delle Scienze Fisiche (1996)

divisione divisióne [Der. del lat. divisio -onis, da dividere] [BFS] D. cellulare: il processo attraverso cui il materiale cellulare, raddoppiatosi durante l'interfase, viene diviso tra le due cellule [...] a (dividendo), cioè, in simboli: x=a:b, oppure x=a/b, con b≠0. Se l'insieme dei numeri che si considerano è quello dei numeri razionali, o dei numeri reali, o, più in generale, un campo, l'operazione di d. (escluso il caso del divisore nullo) ammette ... Leggi Tutto
CATEGORIA: BIOFISICA – FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su divisione (2)
Mostra Tutti
1 2 3 4 5 6 7
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
razionale¹
razionale1 razionale1 agg. [dal lat. rationalis, der. di ratio -onis «ragione»]. – 1. a. Che è fornito, che è dotato di ragione: anima, creatura r.; molti [animali], quasi come razionali ... la notte alle lor case senza alcuno correggimento...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali