• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
il faro
lingua italiana
371 risultati
Tutti i risultati [6075]
Matematica [371]
Biografie [688]
Diritto [581]
Storia [558]
Arti visive [504]
Temi generali [479]
Fisica [380]
Medicina [351]
Economia [335]
Archeologia [371]

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di C[a,b] e Φ(t,n) è, per ogni intero positivo n, una funzione continua di t determinata in qualche modo da t) è una funzione continua di s e t, e λ è un parametro numerico. Si tratta, una volta assegnata la funzione 'nucleo' K, di stabilire quando ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] di considerare importanti nozioni, come quella di molteplicità (quando i valori sono numeri interi) e quella di probabilità (quando i valori sono numeri reali). Serie razionali Formalmente, queste funzioni sono spesso chiamate serie formali e ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

Sistemi dinamici. Origini e sviluppo

Enciclopedia della Scienza e della Tecnica (2007)

Sistemi dinamici. Origini e sviluppo Giovanni Jona-Lasinio La teoria dei sistemi dinamici è un settore della matematica pura e applicata che si è sviluppato intensamente a partire dagli anni Sessanta [...] il piano z=0 negli istanti tk, con k=0,±1,±2,... ordinati secondo valori crescenti. Si introducano gli interi sk=[(tk+1−tk)/2π], che misurano il numero di rivoluzioni complete delle masse grandi tra uno zero e l'altro di z(t) ([a] rappresenta la ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – TEMI GENERALI
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – ACCADEMIA NAZIONALE DEI LINCEI – SISTEMI DI EQUAZIONI LINEARI – DISTRIBUZIONE DI PROBABILITÀ – STATISTICAMENTE INDIPENDENTI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici. Origini e sviluppo (3)
Mostra Tutti

La civiltà islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria

Storia della Scienza (2002)

La civilta islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria Roshdi Rashed Algebra e linguistica. Gli inizi dell'analisi combinatoria Intorno [...] 1983, par. 17) Per cogliere il senso di questo passo supponiamo che il dato intero si decomponga in n fattori primi distinti e si cerchi il numero di parti aliquote prodotto di m interi, con 0⟨m⟨n. Si cerca allora nella tavola l'elemento che si trova ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] (come, per es., la fase, che è descritta da un numero complesso di modulo 1), allora si ricorre a fibrati di altro genere come usare i fibrati in geometria algebrica. Da questa interazione nacque l'estensione di Chern delle idee di Pontrjagin a ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] , il tipo di problemi che potevano essere affrontati mediante tale calcolo coinvolgeva un intero insieme A di funzioni che ovviamente non dipendeva da un numero finito di parametri, come per esempio l'insieme di tutte le funzioni differenziabili ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] (ovvero al numero di righe della matrice Ah). Una versione ridotta del metodo multilivello più adatta a calcolatori di tipo multi-processore si ricava sostituendo P con Ppar, dove Ppar−1=QH−1+Qh−1 si ottiene trascurando l'interazione non lineare fra ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

Modelli

Enciclopedia delle scienze sociali (1996)

Modelli Patrick Suppes Il significato del termine 'modello' nelle scienze Il termine 'modello' non è usato esclusivamente in ambito scientifico, ma nei contesti più vari. Ciascuno di noi sa che cosa [...] gt;B*, allora per ogni C* e D* in ℑ* esiste un intero positivo n tale che sia nA+C* ≥ nB*+D*. Questi assiomi nel periodo 1905-1951 - esclusi gli anni di guerra - conduce alla seguente versione numerica della (1): Ct = 0.29Dt + 0.19Dt-1 + 0.13Dt-2 ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: EQUAZIONI DI NAVIER-STOKES – PASSAGGIO AL COMPLEMENTARE – EQUAZIONE DIFFERENZIALE – TRASFORMAZIONE LINEARE – TEORIA DELLE DECISIONI

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] 1707-1783) fu il primo ad applicare sistematicamente metodi analitici per ottenere proprietà dei numeri interi. Una delle funzioni più importanti per lo studio delle proprietà dei numeri è la funzione ζ da lui introdotta nel 1737 nell'articolo Variae ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] La sua innovativa idea chiave è la nozione di 'additività numerabile'. Una funzione definita su una famiglia di insiemi è ' è uno dei maggiori risultati del XX sec. ed è interamente dovuta allo sviluppo della teoria della misura. L'uso di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 26 ... 38
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
intéro
intero intéro (letter. o region. intièro) agg. e s. m. [lat. integĕr -ĕgri (lat. volg. *-ègri); cfr. integro]. – 1. agg. a. Che ha tutte le sue parti, che non ha perduto o non è stato privato di alcuna: la statua, l’anfora si è conservata...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali