operatorilineari
Luca Tomassini
Un’applicazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] A. Non sempre D(A)=E, ma faremo questa assunzione nel seguito. Con questa semplificazione, le nozioni di somma e prodotto di operatorilineari sono definite in modo ovvio. L’insieme degli x∈E tali che Ax=0 è detto nucleo di A e si indica KerA ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatorilineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché trasforma ogni insieme limitato in uno limitato e in un tale spazio la chiusura di ogni ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatorilineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] semplice è dato da
per ϕ ∈ R, che descrive la rotazione dello spazio euclideo R2 di ϕ gradi in senso positivo.
c) Operatorilineari positivi
Sia E un qualsivoglia spazio vettoriale su R o su C e sia dim E = n ∈ N allora, attraverso la scelta ...
Leggi Tutto
OPERATORI
Fernando BERTOLINI
. 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] nel corpo Γ; così pure si introduce spontaneamente la nozione di convergenza e di somma per una serie di operatorilineari.
Tra le varietà lineari in cui sia definita una nozione di convergenza e di limite, le più notevoli sono gli spazî di Banach ...
Leggi Tutto
OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo)
Tullio Viola
Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] , prima l'uno, poi l'altro; l'associatività di tale prodotto, l'eventuale commutatività; le proprietà degli operatorilineari, detti anche funzionali lineari, ecc.), nasce nella prima metà del sec. XIX (F. J. Servois 1814, A.-L. Cauchy 1827-1848 ...
Leggi Tutto
Fisica
Il c. [A, B] di due grandezze qualsiasi per le quali sia definito un prodotto AB è dato da [A, B]=AB−BA; semplici esempi di prodotti non commutativi, cioè che dipendono dall’ordine dei fattori e [...] senso varia a seconda della situazione comunicativa (come i termini qui, là, ora, ieri, questo, quello, io, tu).
Matematica
C. di due operatorilineari A e B è l’operatore AB-BA, che si indica spesso con il simbolo [A, B]. Se AB=BA si dice che i due ...
Leggi Tutto
Nel calcolo delle probabilità (dal gr. στοχαστικός «congetturale»), lo stesso di casuale e aleatorio. Per estensione, nel linguaggio scientifico, si dice di strumento, procedimento, teoria, modello atti [...] tempo (anche quelli a stati continui) è sotto molti punti di vista equivalente alla teoria dei semigruppi di operatorilineari.
Nella letteratura matematica le equazioni che legano questi semigruppi di matrici sono note col nome di equazioni di ...
Leggi Tutto
spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo.
Botanica
S. biologico Lo s. ottenuto dalle [...] e M. Riesz agli inizi del 20° secolo. Una generalizzazione agli spazi lineari-topologici localmente convessi è dovuta a J. Leray (1950).
Nella teoria degli operatorilineari, dato un operatore lineare T di uno spazio di Banach complesso B in sé, si ...
Leggi Tutto
Matematica
In algebra, particolare tipo di endomorfismo di un insieme A dotato di una qualsiasi struttura algebrica. Si tratta precisamente di un endomorfismo π (diverso dall’endomorfismo identico) idempotente [...] ; in tali spazi, infatti, i p. permettono di formulare notevoli teoremi di rappresentazione per diverse classi di operatorilineari.
Tecnica
P. luminoso
Apparecchio atto a proiettare un fascio di luce intenso e ristretto, allo scopo di illuminare ...
Leggi Tutto
In geometria, corrispondenza biunivoca senza eccezioni tra gli elementi (di solito i punti) che costituiscono due spazi proiettivi Pn e P′n aventi la stessa dimensione, la quale faccia corrispondere a [...] in un vettore avente la medesima direzione). Particolari o. hanno più d’una direzione unita. Le o. vettoriali sono operatorilineari che si incontrano spesso in questioni di fisica-matematica come, per es., l’o. di tensione nei mezzi deformabili, lo ...
Leggi Tutto
linearismo
s. m. [der. di lineare1]. – 1. Nella terminologia critica delle arti figurative, la tendenza a far prevalere la linea su ogni altro elemento di un’opera pittorica o grafica, e spec. sul chiaroscuro e sulle gradazioni del colore....
rete
réte s. f. [lat. rēte]. – 1. Intreccio di fili di materiale vario, incrociati e annodati tra loro regolarmente in modo che restino degli spazî liberi, detti maglie: il materiale (canapa, sparto, cocco e altre fibre vegetali; fibre artificiali;...