• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
26 risultati
Tutti i risultati [225]
Analisi matematica [26]
Matematica [85]
Fisica [45]
Economia [42]
Temi generali [34]
Fisica matematica [28]
Algebra [24]
Biografie [18]
Storia della matematica [15]
Medicina [14]

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] x, y nel campo di definizione D(A) vale sempre (Ax∣y) = (x∣Ay). Operatori simmetrici provengono ad esempio da operatori differenziali con adatte condizioni al contorno. Un operatore simmetrico A con ± i in ρ (A) si dice, in accordo con il caso degli ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

ellittico

Enciclopedia on line

Botanica Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] a quella di un’ellisse, per es.: polarizzazione e., quella riscontrabile nella luce, nelle radioonde ecc. Matematica Operatori e. Particolari tipi di operatori differenziali definiti come segue: sia α=( α1,…, αn) una n-upla di interi αk=0,1,2,… e ... Leggi Tutto
CATEGORIA: ANATOMIA MORFOLOGIA CITOLOGIA – TEMI GENERALI – FISICA MATEMATICA – ANALISI MATEMATICA
TAGS: OPERATORI DIFFERENZIALI – LUNGHEZZA DI UN ARCO – FUNZIONE ANALITICA – FUNZIONE RAZIONALE – FUNZIONI ABELIANE

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] dei punti critici è stata usata anche per studiare altri problemi di geometria conforme, che coinvolgono operatori differenziali di ordine 4 o completamente non lineari. Bibliografia Ambrosetti 1998: Ambrosetti, Antonio, Metodi variazionali in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Equazioni funzionali

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni funzionali Jacques-Louis Lions La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] il caso delle equazioni lineari alle derivate parziali senza condizioni al bordo. In altri termini, sia P un operatore differenziale di ordine m, [1] formula in cui si supponga dapprima che i coefficienti pα siano differenziabili indefinitamente ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – SPAZIO VETTORIALE TOPOLOGICO – EQUAZIONI DI NAVIER-STOKES
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

Leibnitz Gottfried Wilhelm von

Dizionario delle Scienze Fisiche (1996)

Leibnitz Gottfried Wilhelm von Leibnitz 〈làipniz〉 Gottfried Wilhelm von [STF] (Lipsia 1646 - Hannover 1717) Matematico e filosofo. ◆ [MCC] Condizione di L. per le parentesi di Poisson: v. moto, costanti [...] f(x)=g(x)h(x) si ha f'(x)=g'(x)h(x)+g(x)h'(x). Può essere opportunamente generalizzata, per es. per operatori differenziali definiti su varietà: v. varietà riemanniane: VI 502 e. ◆ [ANM] Teorema di L.: afferma che se ai è elemento di una successione ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA
TAGS: PRINCIPIO D'IDENTITÀ – VARIETÀ RIEMANNIANE – HANNOVER – LIPSIA
Mostra altri risultati Nascondi altri risultati su Leibnitz Gottfried Wilhelm von (4)
Mostra Tutti

invariante

Dizionario delle Scienze Fisiche (1996)

invariante invariante [agg. e s.m. Comp. di in- neg. e del part. pres. di variare] [LSF] (a) Generic., che non varia, che resta costante. (b) Specific., di ente, grandezza o anche di espressione, esprimente [...] degli i.: v. invarianti, teoria degli: III 287 a. ◆ [ANM] Operatore i.: operatore la cui forma analitica non muta per qualche trasformazione di coordinate; per gli operatori differenziali i.: v. invarianti, teoria degli: III 286 d. ◆ [CHF] Sistema ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ELETTROLOGIA – FISICA DEI PLASMI – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

indice

Dizionario delle Scienze Fisiche (1996)

indice ìndice [Der. del lat. index -dicis, nome del dito fra il pollice e il medio, normalmente usato per mostrare qualcosa a qualcuno] [LSF] (a) In senso concreto, il componente di un dispositivo indicatore [...] delle emulsioni normalmente usate nell'astronomia): v. stella: V 619 e. ◆ [ALG] I. di operatori: quantità relativa a operatori differenziali, invarianti per trasformazioni di coordinate, che dà informazioni sulla struttura dello spazio su cui gli ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – METROLOGIA – OTTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

pseudodifferenziale

Dizionario delle Scienze Fisiche (1996)

pseudodifferenziale pseudodifferenziale [agg. Comp. di pseudo- e differenziale] [ANM] Operatore p.: operatore che agisce su uno spazio di funzioni definite su una varietà differenziabile, il cui simbolo [...] soddisfa proprietà analoghe a quelle soddisfatte dal simbolo degli operatori differenziali. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

operatore

Enciclopedia on line

Biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). Filosofia In filosofia analitica, un’espressione [...] della struttura di semigruppo con unità; l’o. ω1 ω2 si dice prodotto degli operatori ω1 e ω2 nell’ordine; questi si dicono permutabili qualora ω1 ω2=ω2 ω1 trasformò le corrispondenti equazioni e sistemi differenziali in equazioni e sistemi algebrici, ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – GENETICA – MESTIERI E PROFESSIONI – FISICA MATEMATICA – MECCANICA QUANTISTICA – ANALISI MATEMATICA – LOGICA MATEMATICA – FILOSOFIA DEL LINGUAGGIO – METAFISICA
TAGS: QUANTIFICATORE ESISTENZIALE – GEOMETRIA DIFFERENZIALE – MECCANICA QUANTISTICA – SISTEMI DIFFERENZIALI – ANELLO DEI POLINOMI
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti
1 2 3
Vocabolario
operatóre
operatore operatóre s. m. [dal lat. tardo operator -oris]. – 1. (f. -trice) a. Chi opera, chi compie determinate azioni o operazioni, per lo più abitualmente. Raro in usi generici: o. del male; o. di incantesimi; o. d’inganni; e ant. con il...
tariffa
tariffa s. f. [dall’arabo ta῾rīfa, propr. «notificazione, informazione»]. – 1. a. Serie di prezzi di beni e soprattutto di servizî, qualitativamente o quantitativamente differenziati, che non si formano liberamente sul mercato volta per volta,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali