• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
57 risultati
Tutti i risultati [57]
Matematica [39]
Algebra [20]
Fisica [9]
Storia della matematica [9]
Analisi matematica [8]
Fisica matematica [7]
Geometria [5]
Temi generali [6]
Storia della fisica [3]
Biologia [3]

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] a1ϑ + a0 = 0, ove gli aj sono interi ordinari e il polinomio xn + an-1xn-1 + ... + a1x + a0 è ‛irriducibile', nel senso che non può essere fattorizzato come prodotto di due polinomi a coefficienti interi e di ordini minori. Questo corpo si indica con ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

Teorie unificate

Enciclopedia del Novecento (1984)

Teorie unificate MMirza A. B. Bég di Mirza A. B. Bég SOMMARIO: 1. Introduzione. □ 2. La sintesi elettrodebole: dinamica quantistica dei sapori: a) osservazioni preliminari; b) le interazioni deboli [...] termine V(ϕ) di energia potenziale che è un polinomio quartico (quartico per non distruggere la rinormalizzabilità della corrente definita e i campi che si trasformano in maniera irriducibile sotto il gruppo di isospin debole non coincidono: questi ... Leggi Tutto
TAGS: ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE – COSTANTE DI STRUTTURA FINE – TEORIA DELLE PERTURBAZIONI – CROMODINAMICA QUANTISTICA

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] chiama così in onore del suo maestro) e di 'S-polinomio', insieme con un algoritmo per il calcolo esplicito di queste basi y)=m dove m è intero e f(x,y) è una forma irriducibile di grado ≥3. Il primo allunaggio morbido strumentale e il primo satellite ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Logica matematica

Enciclopedia del Novecento (1978)

Logica matematica Abraham Robinson *La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] venga introdotta una proprietà per caratterizzare alcuni oggetti in una collezione (per esempio, la proprietà di un polinomio di essere irriducibile), è necessario fornire anche un metodo concreto mediante il quale si possa decidere se un dato membro ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: TEOREMA DI INCOMPLETEZZA DI GÖDEL – SCOMPOSIZIONE IN FATTORI PRIMI – TEOREMA DEL BUON ORDINAMENTO – FUNZIONE RICORSIVA PRIMITIVA – INSIEME DEI NUMERI NATURALI
Mostra altri risultati Nascondi altri risultati su Logica matematica (9)
Mostra Tutti

Simmetrie e invarianze

Enciclopedia del Novecento (1982)

Simmetrie e invarianze LLuigi A. Radicati di Brozolo di Luigi A. Radicati di Brozolo SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] e ϕγ∈ℋγ. In generale lo stato Aβϕα non appartiene a un sottospazio irriducibile di ℋ. Solo se Aβϕα ha una proiezione non nulla su ℋγ l u→−u è un gruppo di simmetria della (15). Poiché un polinomio pari ha sempre un estremo all'origine, u=0 è una ... Leggi Tutto
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – ROTTURA SPONTANEA DI SIMMETRIA – FISICA NUCLEARE E SUBNUCLEARE – RAPPRESENTAZIONE IRRIDUCIBILE

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] cercò di amalgamare senza molto successo: quale oggetto definito da una equazione irriducibile tra le variabili complesse s e z di gradi n in s (x,y) è della forma y2−p(x), con p(x) polinomio in x. In seguito, nel 1857, Riemann utilizzò la sua teoria ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] presenta, perché il numero delle rappresentazioni irriducibili è uguale al numero delle classi di per ogni punto in cui f ha molteplicità r e g ha molteplicità s, esistono polinomi A e B tali che h=Af+Bg. L'affermazione è falsa, come dimostra questo ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per essi fungono da unità. Un numero complesso primo (oggi diremmo 'irriducibile') è un numero divisibile solo per sé stesso e per le ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] di intervalli" a estremi razionali, in cui un opportuno polinomio a coefficienti interi cambia di segno (solo una volta). natura di giudizio sintetico a priori come affermava Kant. È 'irriducibile alla logica' e, anzi, offre l'esempio più convincente ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] è risolvibile in un numero di passi maggiorato da un polinomio nelle dimensioni dell'input. Una classe è in NP se due espressioni per il grado fλ della corrispondente rappresentazione irriducibile. Ciascuna è definita in termini del 'diagramma' della ... Leggi Tutto
CATEGORIA: ALGEBRA
1 2 3 4 5 6
Vocabolario
irriducìbile
irriducibile irriducìbile (letter. o ant. irreducìbile) agg. [comp. di in-2 e riducibile]. – 1. a. Che non si può ridurre, cioè rimpiccolire, restringere, ricondurre a una forma più semplice: il prezzo è fisso, i.; i costi di produzione sono...
fattóre
fattore fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali