• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
lingua italiana
27 risultati
Tutti i risultati [412]
Storia della matematica [27]
Matematica [173]
Algebra [91]
Fisica [72]
Analisi matematica [68]
Fisica matematica [62]
Temi generali [40]
Storia della fisica [26]
Statistica e calcolo delle probabilita [21]
Ingegneria [17]

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] g=0 e una curva di equazione h=0 passante r+s−1 volte per ogni punto in cui f ha molteplicità r e g ha molteplicità s, esistono polinomi A e B tali che h=Af+Bg. L'affermazione è falsa, come dimostra questo esempio: f(x,y)=y, g(x,y)=y−x2; la curva di ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti... Enrico Giusti Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] sole v e r nella formulazione cartesiana, o meglio alla sola m in quella di de Beaune. Il metodo di Hudde consiste nell'osservare che un polinomio [42] Q(x)=a0+a1x+a2x2+a3x3+…+anxn ha una radice doppia in un punto x0 se e solo se, oltre a Q(x0)=0, è ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] , indipendentemente l'uno dall'altro, un'altra via, più marginale ma con sviluppi che arriveranno fino ai nostri giorni. Si moltiplica il polinomio [6] P(x)=(x-x1)(x-x2)…(x-xn) per P(−x) e si ottiene Ripetendo questo procedimento m volte si arriva ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] nel caso speciale (detto 'iperellittico') in cui la funzione G(x,y) è della forma y2−p(x), con p(x) polinomio in x. In seguito, nel 1857, Riemann utilizzò la sua teoria delle funzioni di variabili complesse per generalizzare la teoria di Jacobi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] compilazione delle tavole portarono anche a importanti progressi sul piano teorico. Se per valori di x equidistanti, x0, x1,…, xn, e un polinomio f di grado m si formano le differenze f(xi+1)−f(xi), quindi le differenze di queste, e così via (in modo ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La civiltà islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante Roshdi Rashed L'algebra e il suo ruolo unificante La seconda metà del VII sec. vede il costituirsi [...] si intersecano. Le ascisse dei due punti di intersezione sono dalla stessa parte di BC=c1/3; dimostriamo che sono più grandi. Il polinomio x3−ax2+c raggiunge il minimo per x=2a/3 e vale allora (27c−4a3)/27; la condizione di esistenza delle radici è ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] delle congruenze, dimostrato da Lagrange nel 1768, è il seguente (teorema 2.6): se p è un numero primo e f(x) è un polinomio di grado n a coefficienti interi, il cui coefficiente del termine di grado massimo non è divisibile per p, vi sono al più n ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] , studiò le successioni un=(an−bn)/(a−b) e vn=an+bn, nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per n dispari, dividono l'espressione x2−aby2; Lucas ne dedusse la legge ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo Mark Aizerman Teoria dei sistemi e controllo La teoria del controllo si è formata, come campo di ricerca indipendente, [...] Trenta aveva dimostrato che i parametri del feedback del sistema possono essere scelti in modo che tutti i coefficienti del polinomio K(p) siano rappresentati da differenze di valori indipendenti dal tempo, e quindi siano tutti nulli; ciò riduce l ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] ) esiste, anche δ(M) esiste e sono uguali. Il contrario però non è sempre vero. Il teorema principale di Kronecker è: se è un polinomio a coefficienti interi, r il numero di fattori irriducibili di F(x) in Z[x] e νp il numero di soluzioni di F(x)≡0 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3
Vocabolario
polinòmio
polinomio polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado¹
grado1 grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali