• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
33 risultati
Tutti i risultati [158]
Matematica [33]
Fisica [74]
Temi generali [29]
Fisica matematica [22]
Elettrologia [22]
Meccanica quantistica [19]
Meccanica [14]
Algebra [14]
Analisi matematica [13]
Ingegneria [13]

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] differenza tra l'energia cinetica e l'energia potenziale del sistema. In questo caso il funzionale rispetto a x. La coercitività si dimostra esattamente come nel caso scalare, e dunque, usando i metodi diretti del calcolo delle variazioni, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento II Supplemento (1998)

Geometria differenziale Simon M. Salamon SOMMARIO: 1. Introduzione: le origini.  2. Proprietà delle superfici.  3. Studio della curvatura gaussiana.  4. Dimensioni superiori.  5. Varietà e topologia.  [...] 8) nel caso delle dimensioni superiori non porta a un'unica funzione scalare K, ma alle componenti Rijkℓ  di un oggetto di grande significato è il tensore di curvatura di una connessione, o potenziale di gauge, definito su un fibrato particolare su ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – GILLES PERSONNE DE ROBERVAL – SPAZIO DELLE CONFIGURAZIONI – POSTULATO DELLE PARALLELE – EQUAZIONE DI QUARTO GRADO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] x moltiplica y si usa il prodotto scalare di questi vettori tridimensionali; inoltre, diventa inevitabile stati completamente chiariti e resta ancora da esplorare la loro utilità potenziale. Comunque il K2 proposto da Milnor ha già mostrato utili ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] il moto nel campo gravitazionale dovuto alla funzione potenziale V. Nelle sue lezioni sui fondamenti della geometria algebra e φ una forma trilineare su A tale che: Allora lo scalare φn(E,E,E) è invariante per omotopia per proiettori (idempotenti) ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] moto nel campo gravitazionale dovuto alla funzione potenziale V. Nelle sue lezioni sui fondamenti della , a1, a2, a3)− −φ(a2, a0, a1, a2)=0 ∀aj ∈ A. Allora lo scalare φn(E,E,E) è invariante per omotopia per proiettori (idempotenti) E∈Mn(A) (qui φ è ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] problema delle condizioni al contorno della teoria del potenziale (v. equazioni funzionali, vol. II). Per per esempio H = L2(μ), (f ∣ g) = ∫ −fgdμ è un prodotto interno (prodotto scalare) su H, e ∥ f ∥ = (f ∣ f)1/2 definisce una norma su H. Uno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] 〈x∣y〉 〈x∣ = 〈x∣y〉 P. A meno di moltiplicazione per uno scalare, P è un operatore di proiezione. In questo linguaggio, la completezza di un certo insieme e A è un campo di gauge (detto anche potenziale di gauge o connessione di gauge) definito su M ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] Otto Ludwig Hölder, in un libro sulla teoria del potenziale. Lo studio di potenziali a uno e due strati, a densità appartenente a non lineari e delle onde d'urto. Per un'equazione scalare queste leggi hanno la forma: dove le funzioni φi sono lisce ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] è la differenza tra l'energia cinetica e l'energia potenziale, e F rappresenta l''azione' del sistema. I sia discontinua rispetto a x. La coercitività si dimostra come nel caso scalare, e dunque i metodi diretti assicurano che il problema di minimo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] numeri alle rappresentazioni conformi e alla teoria del potenziale; il XIX sec. segnò pure la . Si ha (U*)*=U, ∥U*∥=∥U∥, (U+V)*=U*+V*, (λU)*=λ-U* per ogni scalare complesso λ, (UV)*=V*U*. Quando U è compatto, U* esiste sempre ed è anch'esso compatto. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti
1 2 3 4
Vocabolario
potenziale
potenziale agg. e s. m. [dal lat. tardo potentialis, der. di potentia «potenza»]. – 1. agg. a. Nel linguaggio filos., che concerne la potenza, che è in potenza (nel senso partic. per cui potenza si contrappone ad atto): intelletto p., che...
tensióne
tensione tensióne s. f. [dal lat. tensio -onis, der. di tendĕre «tendere», part. pass. tensus]. – 1. L’azione del tendere e lo stato di ciò che è teso: sottoporre un cavo a forte t.; regolare la t. della corda perché dia la nota esatta, e...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali