L'Ottocento: matematica. Calcolo delle variazioni
Craig Fraser
Calcolo delle variazioni
Il problema di Euler
Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] , inoltre, il trattamento delle condizioni che la curva soluzione deve soddisfare nei punti estremi a e b. Euler adottò immediatamente il metodo diLagrange e introdusse il termine 'calcolo delle variazioni' per indicare la nuova disciplina basata ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] Lagrange avevano studiato i sistemi di equazioni differenziali nel caso particolare di coefficienti aij costanti, nella speranza di l'opportunità di spiegare, tra le altre cose, le relazioni tra le 24 soluzioni di Kummer dal puntodi vista complesso. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] dei puntidi sella aumentato di 2(p−1), dove p è il genere di ∑. Si tratta del teorema di Poincaré-Hopf per una superficie di genere di stabilità diLagrange-Dirichlet per un sistema meccanico conservativo e la nozione di varietà priva di contatto di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] problemi dello stesso genere; per esempio quello di determinare la forma di una catena appesa di data lunghezza nella quale il baricentro si trovi nel punto più basso possibile. Euler e Lagrange studiarono problemi nei quali era presente un vincolo ...
Leggi Tutto
L'Eta dei Lumi: matematica. Il calcolo delle variazioni
Ivor Grattan-Guinness
Il calcolo delle variazioni
Il calcolo in una e più variabili
Una volta sviluppata la teoria della differenziazione e integrazione [...] λ divennero noti come 'moltiplicatori diLagrange'. Il suo approccio alla meccanica rappresentava un'alternativa formidabile alla tradizione newtoniana e a quelle basate sull'energia, sebbene i suoi puntidi forza fossero soprattutto le situazioni ...
Leggi Tutto
Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare.
Abstract [...] , non solo i minimi ma tutti i punti critici di un funzionale sono soluzioni dell’equazione di Euler-Lagrange e in molti casi può accadere che le soluzioni non banali di tale equazione siano invece dei puntidi sella. La loro determinazione è l ...
Leggi Tutto
In matematica, procedimento che permette di prolungare i valori di una funzione al di là dei limiti nei quali la funzione stessa è conosciuta, facendo uso di opportune funzioni o curve dette appunto estrapolatrici.
Precisamente, [...] della funzione nei punti interni a (x1, xn). Alla soluzione del problema si può pervenire facendo opportunamente uso dei metodi e delle formule usati nell’interpolazione (in particolare, per es., le formule di I. Newton e di G.L. Lagrange). ...
Leggi Tutto
Airy Sir George Biddel
Airy ⟨èeri⟩ Sir George Biddel [STF] (Alnwich 1801 - Greenwich 1892) Astronomo reale d'Inghilterra e direttore dell'Osservatorio di Greenwich (1836); socio straniero dei Lincei [...] [OTT] Condizione di A., o condizione di A.-Lagrange o condizione di ortoscopia: assicura l'ortoscopia di un sistema ottico centrato, imponendo che i centri delle pupille d'ingresso e d'uscita del sistema debbano cadere in due punti coniugati tali che ...
Leggi Tutto
Chimica
Generalità
L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] lo regola, dotato di autonoma applicazione (cosiddetta enforceability della norma). Da questo puntodi vista, l’arricchimento della calcolo delle variazioni (già fondato a opera di Bernoulli, Eulero, Lagrange) appare allora come un capitolo dell’a. ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] equazioni del tipo
attualmente note in letteratura come equazioni di d'Alembert-Lagrange. Differenziando l'equazione si ha infatti
[35] la deviazione, al tempo t, del punto x dalla sua posizione di riposo. L'equazione della corda vibrante viene ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...