DEL PEZZO, Pasquale
Franco Rossi
Appartenente ad antica e nobile famiglia napoletana, figlio di Gaetano duca di Caianello (titolo che ereditò nel 1889) e di Angelica Caracciolo dei principi di Torello, [...] della superficie, tra i quali particolare importanza rivestono i saggi Punti singolari delle superfici algebriche e Superfici di Riemann relative alle curve algebriche, entrambi apparsi nei Rend. del Circolo matem. di Palermo, III (1892), pp. 115-26 ...
Leggi Tutto
prodotto
prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] , e in effetti varie funzioni di notevole importanza (per es., la funzione gamma di Eulero e la funzione zeta di Riemann) sono esprimibili come p. infinito: v. funzioni di variabile complessa: II 780 a. ◆ [ANM] P. integrale: di due funzioni in ...
Leggi Tutto
Gauss, Carl Friedrich
Luca Dell'Aglio
Uno dei 'prìncipi' della matematica
Tra Settecento e Ottocento il matematico tedesco Carl Friedrich Gauss ha rivoluzionato la matematica con la moderna teoria dei [...] intrinseca delle superfici, introdotta nella prima parte dell'Ottocento e ripresa qualche decennio dopo da un suo allievo, Bernhard Riemann, che estese l'idea di una geometria intrinseca a 'superfici' con un numero qualsiasi di dimensioni. Nasce così ...
Leggi Tutto
curvatura
Luca Tomassini
Termine generale che indica una serie di caratteristiche quantitative (in termini di numeri, vettori, tensori) descriventi il grado al quale un determinato oggetto geometrico [...] dello spazio nel quale la superficie stessa è immersa. Si tratta dunque di una proprietà intrinseca, un’osservazione che opportunamente generalizzata sarà posta da Bernhard Riemann a fondamento della sua nuova geometria.
→ Geometria non commutativa ...
Leggi Tutto
CASTELNUOVO, Guido
Eugenio Togliatti
Nacque a Venezia il 14 ag. 1865 da Enrico ed Emma Levi. Il padre fu apprezzato autore di romanzi e novelle.
Allievo del liceo Foscarini di Venezia, ove ebbe come [...] ben noto "programma di Erlangen" di F. Klein, e sfruttando ed ampliando i risultati prevalenteMente algebrici e trascendenti di B . Riemann, A. Clebsch, A. Brill, M. Noether, sulle serie lineari di gruppi di punti su una curva algebrica, contribuisce ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] nel trovare, detta pn la successione dei primi, una maggiorazione per lo scarto pn+1−pn in termini di pn. Dall'ipotesi di Riemann per la funzione ζ, tuttora indimostrata, segue
se α>1/2. L'inglese Martin Huxley, usando stime di densità per il ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] quando era studente a Gottinga, e aveva poi collaborato con lui alla cura della prima edizione dei Werke di Riemann. Nel 1882 Weber adattò la dimostrazione di Dirichlet dell'esistenza di infiniti numeri primi in una progressione aritmetica, per ...
Leggi Tutto
forme modulari
Massimo Bertolini
Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] forma modulare di peso k, avente primo coefficiente di Fourier a0=2ζ(k), dove
[3]
è la funzione zeta di Riemann. Utilizzando espressioni polinomiali nelle serie di Eisenstein di peso 4 e 6 si descrivono tutte le forme modulari rispetto al gruppo ...
Leggi Tutto
Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere.
Ecologia
Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] ampiezze sempre minori: infatti, sotto ampie ipotesi i coefficienti ak e bk tendono a 0 per k→∞ (teorema di Riemann). Tale metodo si applica anche a equazioni differenziali nello studio di oscillazioni di corde, membrane o circuiti elettrici e nella ...
Leggi Tutto
In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] . La nozione qui esposta di i. definito è sostanzialmente dovuta a P. Mengoli, A. Cauchy e B. Riemann; dell’i. di Mengoli-Cauchy-Riemann si conoscono varie generalizzazioni tra cui, particolarmente notevoli, l’i. secondo H. Lebesgue e l’i. secondo T ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...