La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] , alla quale Gauss fa riferimento, ha subito notevoli trasformazioni. Sistemi di calcolo evoluti esistono da non meno di seimila anni - .
Un numero α si dice algebrico di grado n se è radice di un'equazione f(x)=axn+bxn−1+…+c=0, dove a≠0, e b,…,c sono ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] varie equazioni diofantee suggerisce una fattorizzazione simile degli interi anche in sistemi algebrici contenuta nella sua copia dell'Arithmetica di Diofanto circa il fatto che l'equazione diofantea
[6] xn+yn=zn n≥3
non ha soluzioni intere non ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] vettoriali. Si stabiliscono i teoremi di esistenza e di unicità; sono studiate in modo particolare le equazioni e i sistemi di equazioni differenziali lineari.
Il quinto capitolo sviluppa lo studio locale di una funzione. Si spiegano le relazioni ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] che le intersezioni tra una retta e un cerchio conducono a equazioni di secondo grado: ciò corrisponde al fatto che l’intersezione di continuità; nel caso della retta, ossia del sistema dei numeri reali, la continuità esprime il fatto intuitivo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] impossibile leggere le proprietà richieste dal risultato finale.
Nel metodo delle basi di Grobner, viceversa, dato un sistema di equazioni questo si sostituisce con uno equivalente ma in forma normale. La forma che si ottiene dipende dai coefficienti ...
Leggi Tutto
Combinatoria
Peter J. Cameron
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] di sei reggimenti diversi, uno per ogni grado e reggimento, è possibile sistemare i trentasei ufficiali in un quadrato 6×6 in modo che in non è osservabile ed è per questo che le equazioni differenziali danno una buona descrizione dell'Universo. La ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] un sistema di corpi indipendenti posti in un c. esterno; le proprietà statistiche sono funzioni del valore assunto dal c. medio (parametro incognito) e, in partic., il valore stesso di tale c.; questo dà quindi luogo a un'equazione di consistenza ...
Leggi Tutto
momento
moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] generica sezione trasversale, come conseguenza delle equazioni cardinali della meccanica si riconosce che il o dall'altra di π. La definizione si estende in modo ovvio ai sistemi. Per un sistema discreto il m. statico è la somma algebrica, S=Σi=ni=1 ...
Leggi Tutto
energia
energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] interna; da tale relazione discende che l'e. interna non dipende dal volume, ma solo dalla temperatura, soltanto per quel sistema la cui equazione di stato dia luogo per un'isocora reversibile a un'espressione del tipo p/T=cost, cioè soltanto per un ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] forma quadratica binaria
[3] Q=ax2+2bxy+cy2,
e utilizzando il sistema
egli considerò θ(Q)=b2−ac, il discriminante della forma quadratica, puramente geometriche sui punti di flesso della curva di equazione f=0 (f è in questo caso un polinomio ...
Leggi Tutto
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...