• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
69 risultati
Tutti i risultati [69]
Matematica [36]
Analisi matematica [19]
Algebra [18]
Fisica [14]
Geometria [11]
Fisica matematica [10]
Meccanica quantistica [10]
Temi generali [7]
Meccanica [8]
Meccanica dei fluidi [7]

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] ◆ [EMG] [MCC] Campo v.: un campo la cui grandezza ha carattere vettoriale: v. campi, teoria classica dei: I 470 d. ◆ [ALG] Fibrato indipendenti se klvl+...+ krvr=0 solo quando kl=...=kr=0). Sottospazio V' di V è l'insieme degli elementi di V ottenuto ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

sottospazio

Enciclopedia della Matematica (2013)

sottospazio sottospazio sottoinsieme E di uno → spazio S, dotato della stessa struttura algebrica e topologica di S, cioè tale che risulti a sua volta uno spazio della stessa natura di S. Tra i sottospazi [...] da una combinazione lineare dei vettori v1, v2, ..., vk. L’insieme di tali vettori è detto base del sottospazio. In uno spazio vettoriale Vn, i sottospazi di dimensione n − 1 sono detti → iperpiani e sono rappresentati da equazioni del tipo a0 + a1x1 ... Leggi Tutto
TAGS: LINEARMENTE INDIPENDENTI – COMBINAZIONE LINEARE – STRUTTURA ALGEBRICA – SPAZIO VETTORIALE – SPAZIO EUCLIDEO

sottospazio ortogonale

Enciclopedia della Matematica (2013)

sottospazio ortogonale sottospazio ortogonale in algebra lineare, dati uno spazio vettoriale V su un campo K dotato di prodotto scalare, qui indicato con 〈 , 〉, e un suo sottoinsieme S, è il sottoinsieme [...] tutti i vettori di V ortogonali ai vettori w di S, tali cioè che ∀v ∈ V, 〈w, v〉 = 0, che si dimostra essere un sottospazio di V. Due sottospazi U e W di V si dicono ortogonali se U ⊆ V ⊥ (e allora, per la simmetria del prodotto scalare, è anche V ⊆ U ... Leggi Tutto
TAGS: SPAZIO VETTORIALE – PRODOTTO SCALARE – ALGEBRA LINEARE – SOTTOINSIEME – SIMMETRIA

topologia

Enciclopedia on line

Matematica Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse. Proprietà topologiche La t., che [...] S da ben precise relazioni topologiche. Per es., se T è un sottospazio chiuso di S, esistono relazioni ben precise tra i gruppi di omologia S*, ∂*) rispetto a G. Per es., lo spazio vettoriale di tutte le n-forme su una varietà differenziabile munito ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: RELAZIONE DI EQUIVALENZA – VARIETÀ DIFFERENZIABILE – COMPLESSO SIMPLICIALE – CALCOLO DIFFERENZIALE – STRUTTURA TOPOLOGICA
Mostra altri risultati Nascondi altri risultati su topologia (6)
Mostra Tutti

proiettore

Enciclopedia on line

Matematica In algebra, particolare tipo di endomorfismo di un insieme A dotato di una qualsiasi struttura algebrica. Si tratta precisamente di un endomorfismo π (diverso dall’endomorfismo identico) idempotente [...] l’attributo idempotente). Il più semplice esempio di p. è costituito dalla proiezione, per es. ortogonale, di uno spazio vettoriale su di un suo sottospazio; altro esempio è l’operatore che a ogni elemento (g1, g2) del prodotto diretto G1⊗G2 di due ... Leggi Tutto
CATEGORIA: APPARECCHIATURE MATERIALI E TECNICHE – PRODUZIONE INDUSTRIA E MERCATO – ALGEBRA – INDUSTRIA AUTOMOBILISTICA FERROVIARIA E NAVALE – STRUMENTI E TECNOLOGIA APPLICATA
TAGS: STRUTTURA ALGEBRICA – SPAZIO VETTORIALE – CRISTALLO LIQUIDO – CENTIMETRO QUADRO – ENERGIA ELETTRICA

ortonormale

Enciclopedia on line

In matematica si dice di un sistema di vettori che siano a due a due ortogonali e inoltre di lunghezza unitaria, o anche di un sistema di funzioni f1(x), … fn(x), …, in numero finito o infinito, tali che, [...] , una base costituita da vettori o.: siano v1, v2, …, vn, n vettori costituenti una base dello spazio vettoriale V; si ponga e1 = v1/| v1| e si scelga e2 nel sottospazio generato da v1, v2, in modo che sia perpendicolare a e1 e di lunghezza unitaria ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: POLINOMI DI LEGENDRE – SPAZIO VETTORIALE – FUNZIONI CONTINUE – ASSE REALE – MATEMATICA
Mostra altri risultati Nascondi altri risultati su ortonormale (1)
Mostra Tutti

SISTEMI DINAMICI

Enciclopedia Italiana - VI Appendice (2000)

Sistemi dinamici Franco Magri Dmitrij Anosov Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] di ogni traiettoria di tale flusso è un sottospazio omogeneo di volume finito; la seconda che qualsiasi ogni punto della frontiera del 'toro solido' D²3S¹ il campo vettoriale della velocità di fase è indirizzato verso l'interno del toro solido ( ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI DIFFERENZIALI DEL MOTO – EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA DELLE PERTURBAZIONI
Mostra altri risultati Nascondi altri risultati su SISTEMI DINAMICI (3)
Mostra Tutti

Geometria

Enciclopedia Italiana - VI Appendice (2000)

Geometria Ryoichi Kobayashi e Luigi Ambrosio Giovanni Bellettini (XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391) Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] classi di omologia forma uno spazio vettoriale finito-dimensionale. Lo spazio vettoriale duale è lo spazio delle forme risultati nelle approssimazioni diofantee, come il teorema del sottospazio di Schmidt, suggeriscono che l'origine del 2 ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – CARATTERISTICA DI EULERO – FUNZIONI DIFFERENZIABILI
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] e della terza condizione (8) e definiamo Indicata con u(t) la funzione vettoriale x → u(x, t), si vede che, se u è soluzione ‛ Ad esempio, nel quadro del problema (14) si sceglie un sottospazio Vh di V formato da funzioni lineari a tratti, o da ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] 'insieme S2(N) di tali forme possiede la struttura di spazio vettoriale complesso. Data f(z) in S2(N), il differenziale f(z ' se per ogni divisore primo p di m non esiste alcun sottospazio di dimensione uno di Fp2 invariante per l'azione di GQ su ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti
1 2 3 4 5 6 7
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
suppleménto
supplemento suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali