Livello massimo, al di sopra o al di sotto del quale si verifica un fenomeno.
Fisica
Angolo limite
In ottica, nel passaggio di un raggio da un mezzo a un altro con indice di rifrazione assoluto inferiore [...] insiemi; di solito, inoltre, questi insiemi sono anche dotati di una medesima struttura algebrica o topologica (per es., possono essere A-moduli oppure spazitopologici). In secondo luogo, mentre nel caso del l. di una successione o di una funzione ...
Leggi Tutto
Nell’antichità classica, panno, generalmente di lino, usato sia come tovagliolo, sia come acconciatura femminile. Gli antichi agronomi chiamarono m. (perché spesso eseguite su tela) ogni rappresentazione [...] , con riferimento a insiemi dotati di strutture algebriche, sinonimo di morfismo (➔ categoria).
In topologia è usato a proposito di applicazioni biunivoche e bicontinue f tra due spazitopologici S e S′: se f applica l’aperto A di S nell’aperto A′ di ...
Leggi Tutto
In matematica, trasformazione di una categoria C in un’altra categoria D, definita da una coppia di ‘funzioni’, ϕ e ψ, tali che: a) se A, B, ... indicano ‘oggetti’ di C, ϕ(A), ϕ(B) ... sono ‘oggetti’ ben [...] .
In analisi sono classici certi processi di ‘completamento’ o ‘compattizzazione’ che definiscono f. tra categorie di spazitopologici.
In algebra, e soprattutto in algebra omologica, sono fondamentali i f. che derivano dal prodotto tensoriale e ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] Γ-convergenza è stata introdotta da De Giorgi e T. Franzoni nel 1975 per spazitopologici generali. Nel caso in cui U sia uno spazio metrico, come ad esempio gli spazi Lp considerati nei capitoli precedenti, essa può essere espressa nel modo seguente ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] funzionale non venne mai sviluppata nel XIX sec. nell'ambito della trattazione di tale teoria.
Spazitopologici e spazi metrici
L'introduzione della topologia insiemistica per classi di funzioni e per insiemi astratti si deve a Maurice-René Fréchet ...
Leggi Tutto
insiemi parzialmente ordinati
Luca Tomassini
Un insieme (o spazio) A sul quale sia definito un ordine parziale ≤, spesso detto anche poset. Un ordine parziale è una relazione binaria che soddisfa le [...] di generalizzare il concetto di successione a elementi indicizzati da insiemi non numerabili e non solo dagli interi ℕ e dunque la nozione di convergenza a spazitopologici generali.
→ Combinatoria; Equazioni differenziali: problemi non lineari ...
Leggi Tutto
spazio non commutativo
Luca Tomassini
L’oggetto di studio della geometria non-commutativa. Il fondamento concettuale della nozione di spazio non-commutativo è fornito dal teorema di Gelfand, che stabilisce [...] identità e algebre C0(X,ℂ) di funzioni continue a valori complessi su opportuni spazitopologici (compatti di Hausdorff) dotate della norma
Una fondamentale proprietà degli spazi di Hausdorff è che le funzioni continue su di essi separano i punti ...
Leggi Tutto
trasformazione
trasformazióne [Der. del lat. transformatio -onis, dal part. part. transformatus di transformare "cambiare la forma", comp. di trans- "trans-" e formare "dare forma"] [LSF] (a) Qualsiasi [...] : → Lorentz, Hendrik Antoon. ◆ [MCC] T. di simmetria: v. meccanica dei continui: III 693 a. ◆ [ALG] T. di spazitopologici: v. topologia algebrica: VI 259 e. ◆ [RGR] T. galileiana: lo stesso che t. di Galilei (←). ◆ [ANM] T. integrale: particolare t ...
Leggi Tutto
teorema di esistenza degli zeri
Luca Tomassini
Sia f una funzione continua a valori reali su un intervallo chiuso [a,b] della retta reale ℝ e sia c un numero reale compreso tra f(a) e f(b). Il teorema [...] dell’analisi matematica classica. Il teorema può inoltre essere generalizzato al caso di spazitopologici: una funzione continua f:X→ℝ definita su uno spaziotopologico connesso X che assuma due valori distinti assume anche ogni valore tra di essi ...
Leggi Tutto
compatto
compatto [Der. del part. pass. compactus del lat. compingere "unire strettamente" e quindi "fitto, denso, poco ingombrante"] [ALG] Gruppo c.: gruppo topologico, che sia c. come spaziotopologico [...] (per es., nella meccanica quantistica e nella teoria delle equazioni integrali). ◆ [ALG] Spaziotopologico c.: s'intende come tale uno spaziotopologico tale che ogni suo ricoprimento mediante insiemi aperti contiene una famiglia finita che è ancora ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...