Diritto
Diritto privato
Fenomeno squisitamente giuridico per il quale un soggetto subentra ad altro soggetto in un complesso di rapporti giuridici patrimoniali ovvero in un rapporto giuridico patrimoniale [...] ∈D∣fn(x)−f(x)∣<ε.
Per s. di tipo particolare si possono dare anche altri tipi di convergenza. Per es., negli spazivettoriali dotati di una norma (➔ spazio) si dice che {an} tende ad a se, fissato ε>0, esiste ν tale che per ogni n>ν è ||an ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] Vi si espone la teoria dei moduli sugli anelli a ideali principali. L'ultima parte è relativa agli endomorfismi degli spazivettoriali; essa studia i moduli associati, i valori e i vettori propri e la riduzione alla forma diagonale. Per il polinomio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] di distribuzione data da Schwartz si basa sulla nozione di dualità degli spazivettoriali topologici.
è lo spazio dei funzionali lineari continui su
,
è cioè il duale dello spazio delle funzioni test a supporto compatto
,
dotato di un'opportuna ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] alcune idee di Julius König (1849-1913), secondo le quali una connessione stabilisce una relazione lineare tra spazivettoriali (non necessariamente spazi tangenti) associati a una varietà in due punti a distanza infinitesima.
Il punto di vista di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] Lebesgue si aprirono nuove e vaste aree di applicazione. Nei dieci anni successivi la teoria fu estesa ad altri spazivettoriali, particolarmente da Billy J. Pettis, Nelson Dunford, Israil Moiseevič Gel′fand e Ralph S. Phillips. Negli anni Sessanta ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] interno di due unità diverse è zero. In questo modo Grassmann può dedurre le proprietà di ortogonalità negli spazivettoriali. Il prodotto interno di due grandezze estensive ha per grandezze dello stesso ordine m una forma particolarmente semplice ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] numeri reali, i numeri complessi, i quaternioni a coefficienti reali sono gli unici corpi associativi che da un punto di vista additivo costituiscono spazivettoriali di dimensione finita rispettivamente 1, 2, 4 sui numeri reali.
Anche se il calcolo ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] principale è di compiere una vasta generalizzazione del concetto di dimensione che si incontra nella teoria degli spazivettoriali e dei campi algebricamente chiusi. Shelah giunge a una classificazione quasi completa delle possibili cardinalità e ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] Abel, e quelli di Steiner di geometria proiettiva. Per dare spazio alla matematica 'pratica' Crelle dà vita nel 1829 a un secondo è in gran parte costituito dalla teoria degli spazivettoriali a n dimensioni, in sostanza, dall'algebra lineare ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] una versione modernizzata delle idee di Grassmann a partire dagli anni Ottanta, ma la teoria assiomatica astratta degli spazivettoriali si sarebbe affermata solo molto più tardi intorno al 1920.
Una terza linea di sviluppo strettamente collegata con ...
Leggi Tutto
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...