In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] veduta moderna, degna di nota è quella di D. Hilbert, nella quale i di rette, fascio di piani); forme di seconda specie (piano punteggiato, piano rigato, stella di rette, stella di piani); forme di terza specie (spazio punteggiato, spaziodi ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello dispazio-tempo, allora la teoria generale [...] , la K-omologia ammette una definizione piuttosto semplice in termini dispazidiHilbert e di rappresentazioni di Fredholm di algebre, così com'è gradualmente emerso dai lavori di Michael Francis Atiyah, I. Singer, Lawrence G. Brown, Richard G ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] hermitiane positive, le forme diHilbert, le famiglie ortogonali, il procedimento di ortonormalizzazione, il prodotto tensoriale dispazidiHilbert. Si studiano classi di operatori negli spazidiHilbert nonché applicazioni parzialmente isometriche ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] chiama cubo (o mattone) diHilbert il sottoinsieme costituito dalla totalità delle di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una famiglia B di aperti non vuoti di S tali che ogni aperto di S sia unione di elementi di ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] polinomialmente da λ e in maniera complicata dalle coordinate sullo spazio delle fasi. Per ipotesi, durante il moto del di chiusura altre asserzioni simili (ugualmente 'evidenti').
Il ventunesimo problema diHilbert
In questo problema si chiede di ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] ogni dominio limitato M in Cn nel modo seguente. Sia H lo spaziodiHilbertdi funzioni olomorfe di quadrato sommabile su M e sia f0, f1, f2, ... una base ortonormale completa per H. La funzione nucleo di Bergman K(z, ÿ) è definita dalla
K(z, ÿ)=Σ∣fj ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] per Cayley e Noether notare che, nel caso delle superfici rigate (ossia contenenti infinite rette) di grado d dello spazio ordinario P3, calcolando il polinomio diHilbert della curva dei punti doppi per n = d - 4 ne risultava un valore non positivo ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] ogni spaziodi dimensione pari, qualsiasi processo di dualità è associato a una conica, mentre in uno spaziodi David Hilbert (1862-1943) si schierò in difesa di quella impostazione, seguito poi da un altro brillante matematico di Gottinga, ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] e per cui Eψk = Ekψk. Un ‛osservabile' E è un operatore hermitiano in uno spaziodiHilbertdi funzioni d'onda. Che gli operatori hermitiani abbiano autovalori reali è in accordo con il fatto che tali autovalori possono essere interpretati ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] alla geometria algebrica. La Noether elaborò le idee diHilbert su anelli e ideali e le trasformò in una 'stabili'. Per i suoi lavori sugli spazidi moduli e su molti altri argomenti di geometria algebrica Mumford fu insignito della medaglia ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...