C*-algebre
Luca Tomassini
Un’algebra normata (o algebra di Banach A) è un’algebra sul corpo dei numeri complessi ℂ dotata di una norma ∣∣∙∣∣ che soddisfa la relazione ∣∣ab∣∣≤∣∣a∣∣∙∣∣b∣∣, dove a e b [...] algebre sono: (a) l’algebra C0(X) delle funzioni continue su uno spazio compatto X; (b) l’algebra B(ℋ) degli operatori lineari continui su uno spaziodiHilbert ℋ o qualunque sua sottoalgebra chiusa nella topologia indotta da B(ℋ). In un certo senso ...
Leggi Tutto
Anatomia
Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto.
M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia [...] si possono disporre secondo strati in un parallelotopo nello spazio a r dimensioni. Quanto poi ad alcune generalizzazioni concettualmente più rilevanti, ricordiamo: la considerazione, dovuta a D. Hilbert, di m. di ordine infinito, la cui teoria è in ...
Leggi Tutto
sistema Nell’ambito scientifico, qualsiasi oggetto di studio che, pur essendo costituito da diversi elementi reciprocamente interconnessi e interagenti tra loro e con l’ambiente esterno, reagisce o evolve [...] della scelta dell’uno o dell’altro dei due spazi come spazio-oggetti e spazio-immagini deriva dal principio dell’invertibilità del cammino dei di G. Frege, di B. Russell e A.N. Whitehead, di J. Łukasiewicz, di D. Hilbert e W. Ackermann, di D. Hilbert ...
Leggi Tutto
Premessa. - Gli sviluppi dell'a. nel quindicennio 1960-75 sono stati assai notevoli, sia dal punto di vista quantitativo sia da quello qualitativo. Prima di esaminare alcuni progressi in direzioni particolari, [...] risposta negativa a uno dei problemi posti da D. Hilbert nel congresso di Parigi nel 1900. Sulla struttura degli anelli (non (Gli elementi di un gruppo G costituiscono la base di un'a., AG, che è uno spazio vettoriale a coefficienti su di un campo K; ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Renato Caccioppoli
Luca Dell'Aglio
Figura chiave nello sviluppo del pensiero matematico in Italia durante la prima parte del Novecento, le sue ricerche spaziano nei vari rami dell’analisi matematica, [...] di alcune prime tipologie dispazi funzionali; e poi, a partire dal 1927, da parte di Juliusz Paweł Schauder (1899-1943), nel caso generale di uno spaziodi da David Hilbert (1862-1943) nel 1900 al Congresso internazionale dei matematici di Parigi, fu ...
Leggi Tutto
algebra non commutativa
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] rappresentazioni lineari dei gruppi e delle algebre su spazi vettoriali. Lo studio del caso in cui la dimensione di V sia infinita e dotato di una particolare topologia (avviato da David Hilbert) costituisce uno dei capitoli fondamentali dell’analisi ...
Leggi Tutto
Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare.
Abstract [...] di David Hilbert e poi, in Italia, da Leonida Tonelli. L’idea è che invece di passare attraverso la risoluzione dell’equazione di I risultati ottenuti per spazi euclidei sono stati opportunamente estesi a spazi funzionali di dimensione infinita, anche ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1895) adottò lo stesso approccio nello studio dello spazio a 5 dimensioni delle coniche del piano. I geometri avevano da tempo compreso che lo spaziodi tutte le curve piane di grado n forma una varietà di dimensione (n+3)n/2 ma soltanto verso il ...
Leggi Tutto
FUBINI (Fubini Ghiron), Guido
Marta Menghini
(Fubini Ghiron), Nacque a Venezia il 19 genn. 1879 da Lazzaro e da Zoraide Torre. Compì i suoi studi presso la Scuola normale superiore di Pisa, dove ebbe [...] sulle funzioni automorfe estese risultati di H. Poincaré, F. Klein, D. Hilbert e altri costruendo le funzioni 99-117) di una superficie nello spazio a tre dimensioni o di una ipersuperficie nello spazio a più dimensioni come quoziente di due forme ...
Leggi Tutto
DEL RE, Alfonso
Franco Rossi
Nacque a Calitri (Avellino) l'8 ott. 1859 da Raffaele e da Rosa Margotta.
Appena quindicenne si trasferì a Napoli ove compì gli studi superiori e quindi si iscrisse alla [...] K. G. v. Staudt e W. R. Hamilton fino a D. Hilbert. In tutti questi campi egli si orientò, con spirito moderno, alla divulgazione dei dell'università di Modena dal titolo: Sulla struttura geometrica dello spazio in relazione al modo di percepire i ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...