La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] hermitiane positive, le forme diHilbert, le famiglie ortogonali, il procedimento di ortonormalizzazione, il prodotto tensoriale dispazidiHilbert. Si studiano classi di operatori negli spazidiHilbert nonché applicazioni parzialmente isometriche ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] . Tali simmetrie si esprimono in modo naturale con azioni di gruppi di Lie (o delle loro corrispondenti algebre) su spazidiHilbert. La teoria del gruppo di Lorenz, per esempio, necessaria nella formulazione relativistica delle interazioni ...
Leggi Tutto
autovalore
Luca Tomassini
Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] che lo rappresenta in questa base è diagonale. La generalizzazione di questi concetti al caso dispazi vettoriali a dimensione infinita (in particolare a spazidiHilbert) costituisce l’oggetto della teoria spettrale, sviluppatasi dalla fine del ...
Leggi Tutto
hermitiano
hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spaziodiHilbert H, tale che per ogni x, y in D(a) si ha (Ax,y)=(x,Ay); quando A è limitato, si può estendere l ...
Leggi Tutto
trasformazione Mutamento di forma, di aspetto, di struttura.
Biologia
Trasformazione batterica
Fenomeno che si verifica spontaneamente in natura quando le cellule si trovano in uno stadio, detto competente, [...] delle operazioni (➔ DFT). T. diHilbert T. integrali definite da:
e inversamente:
T. integrale
T. lineare tra spazidi funzioni definita mediante un integrale. Esempi importanti sono le t. di Fourier, di Laplace, di Mellin ecc. T. integrali si ...
Leggi Tutto
Matematica
In algebra, particolare tipo di endomorfismo di un insieme A dotato di una qualsiasi struttura algebrica. Si tratta precisamente di un endomorfismo π (diverso dall’endomorfismo identico) idempotente [...] però interesse soprattutto in relazione agli spazi, per es., di Banach, diHilbert, di Kantorovič; in tali spazi, infatti, i p. permettono di formulare notevoli teoremi di rappresentazione per diverse classi di operatori lineari.
Tecnica
P. luminoso ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] gli sviluppi più recenti della teoria delle soluzioni di viscosità va segnalato lo studio di e. - di tipo [1] e [7] - in dimensione infinita, e cioè nel caso in cui Ω sia un aperto in uno spaziodiHilbert o di Banach (v. funzionale, analisi, App. IV ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] polinomialmente da λ e in maniera complicata dalle coordinate sullo spazio delle fasi. Per ipotesi, durante il moto del di chiusura altre asserzioni simili (ugualmente 'evidenti').
Il ventunesimo problema diHilbert
In questo problema si chiede di ...
Leggi Tutto
algebra
àlgebra [Lat. algebra, der. dell'arabo al-giabr propr. "restaurazione", e quindi "riduzione" (dapprima nel signif. medico-chirurgico, e poi in quello matematico), che compare la prima volta in [...] costituenti un'a. e definiti su determinati spazi: a. di Banach, diHilbert, a. C∗, ecc.: v. algebre di operatori. ◆ [ALG] A. C∗ di tipo I: v. algebre di operatori: I 95 e. ◆ [ALG] A. C∗ liminare: v. algebre di operatori: I 95 f. ◆ [ALG] A. C ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] che esso interviene nella formulazione del diciottesimo problema diHilbert, nel quale ci si domanda se sia vero che in uno spazio euclideo, di dimensione qualsiasi, esiste solo un numero finito di gruppi cristallografici. Il problema è stato risolto ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...