La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] numeri reali, i numeri complessi, i quaternioni a coefficienti reali sono gli unici corpi associativi che da un punto di vista additivo costituiscono spazivettoriali di dimensione finita rispettivamente 1, 2, 4 sui numeri reali.
Anche se il calcolo ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] una versione modernizzata delle idee di Grassmann a partire dagli anni Ottanta, ma la teoria assiomatica astratta degli spazivettoriali si sarebbe affermata solo molto più tardi intorno al 1920.
Una terza linea di sviluppo strettamente collegata con ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...]
Particolare importanza in geometria differenziale hanno alcune classi speciali di fibrati: tra questi i fibrati vettoriali, in cui la fibra è uno spaziovettoriale Vn a n dimensioni, come i fibrati tangenti e cotangenti a una varietà differenziabile ...
Leggi Tutto
In geometria, corrispondenza biunivoca senza eccezioni tra gli elementi (di solito i punti) che costituiscono due spazi proiettivi Pn e P′n aventi la stessa dimensione, la quale faccia corrispondere a [...] il nome di affinità con un punto fisso o anche di epimorfismi di uno spaziovettoriale (ossia di omomorfismi tra spazi coincidenti). Una qualsiasi o. vettoriale ammette sempre almeno una direzione unita (cioè un vettore avente tale direzione viene ...
Leggi Tutto
Geometria
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] una sottovarietà Z con bordo Y₁−Y₂. La totalità delle classi di omologia forma uno spaziovettoriale finito-dimensionale. Lo spaziovettoriale duale è lo spazio delle forme differenziali su M, il quale è dato, per definizione, dagli oggetti integrati ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] complesso bidimensionale C² per i quali |z|²1|w|²=1 (C² è quadrimensionale come spaziovettoriale su R). La velocità di fase del flusso di Hopf è un campo vettoriale che fa corrispondere al punto (z,w) il vettore (iz,iw). Le traiettorie del flusso ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] descritta sopra, dalle trasversali date dalle geodetiche chiuse del toro M.
La controparte algebrica di un fibrato vettoriale è lo spazio delle sezioni lisce C∞(X,E); in particolare se ne può calcolare la dimensione determinando la traccia dell ...
Leggi Tutto
Variazioni, calcolo delle
Gianni Dal Maso
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] a,b] è abbastanza piccolo in un senso tecnico ben preciso, u è un minimo locale.
Il caso vettoriale
Se la funzione u(x) prende i suoi valori nello spazio euclideo m-dimensionale ℝm, possiamo esprimerla mediante le sue coordinate (u1(x),…,um(x)) e la ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] omogenei di grado q in n+1 variabili. L'insieme delle forme di grado dato in un insieme di variabili è uno spaziovettoriale su cui opera il gruppo delle matrici invertibili (n+1)×(n+1) per sostituzione delle variabili. Se si considerano le n+1 ...
Leggi Tutto
fibrato vettoriale
Luca Tomassini
Un fibrato {B,X,F,τ} con spazio totale B, spazio di base X e proiezione canonica τ:B→X è detto fibrato vettoriale se: (a) la fibra tipica X è uno spaziovettoriale [...] di dimensione finita e la sua topologia relativa (come sottoinsieme di B) coincide con la sua topologia come spaziovettoriale; (b) ogni banalizzazione locale φα:τ−1(x)⊂B→Uα×F⊂X×F (dove x∈X) è un’applicazione lineare. Un fibrato complesso, per es., è ...
Leggi Tutto
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...