• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
89 risultati
Tutti i risultati [166]
Matematica [89]
Fisica [37]
Algebra [33]
Analisi matematica [27]
Fisica matematica [27]
Geometria [20]
Temi generali [15]
Storia della matematica [14]
Biologia [11]
Ingegneria [8]

Modelli, Teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Modelli, Teoria dei Silvio Bozzi Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] T in termini di invarianti (cardinali o altro), così come avviene nel caso dei campi algebricamente chiusi o degli spazi vettoriali. Nel corso di questa indagine Shelah introdurrà nozioni e metodi fondamentali quali il concetto di forking, quello di ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: TEOREMA DI COMPATTEZZA – GRUPPO DI AUTOMORFISMI – TEORIA DELLA STABILITÀ – CLASSI D'EQUIVALENZA – GEOMETRIA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su Modelli, Teoria dei (3)
Mostra Tutti

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] una versione modernizzata delle idee di Grassmann a partire dagli anni Ottanta, ma la teoria assiomatica astratta degli spazi vettoriali si sarebbe affermata solo molto più tardi intorno al 1920. Una terza linea di sviluppo strettamente collegata con ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] v. può essere dotato di strutture o proprietà addizionali che ne particolarizzano la collocazione tra tutti gli spazi vettoriali. Una proprietà addizionale che s'incontra frequentemente è l'esistenza del prodotto interno (o prodotto scalare). Si ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

prodotto

Dizionario delle Scienze Fisiche (1996)

prodotto prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] : → tensore. ◆ [ALG] P. tensoriale di p-forme: v. forme differenziali: II 685 c. ◆ [ALG] P. tensoriale di spazi vettoriali: v. gruppi, rappresentazione dei: III 121 b. ◆ [ANM] P. tensoriale infinito di una successione: v. algebre di operatori: I 96 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

anello

Enciclopedia della Scienza e della Tecnica (2008)

anello Luca Tomassini La nozione di anello esprime in forma astratta le analogie presenti, per es., tra la manipolazione dei numeri interi relativi e quella dei polinomi. Il suo studio è stato decisivo [...] ben lontana dall’esaurire tutte le possibilità: gli anelli di matrici (o anche di operatori lineari su spazi vettoriali), per es., non possiedono tale attributo. Il calcolo algebrico in questo caso, detto non-commutativo, richiede evidentemente ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su anello (2)
Mostra Tutti

equivalenza categorica

Enciclopedia della Scienza e della Tecnica (2008)

equivalenza categorica Luca Tomassini Una categoria C è composta da: (a) una classe ObC (non necessariamente un insieme, dunque) di oggetti, per esempio enti matematici (gruppi o loro rappresentazioni, [...] spazi vettoriali o topologici, varietà ecc.); (b) una classe MorC di morfismi o frecce, applicazioni da un oggetto a un altro (per es., rispettivamente omomorfismi o operatori di allacciamento tra rappresentazioni, applicazioni lineari o continue, ... Leggi Tutto
CATEGORIA: ALGEBRA

autovalore

Enciclopedia della Scienza e della Tecnica (2008)

autovalore Luca Tomassini Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] ed è il raggio del più piccolo cerchio con centro nell’origine del piano complesso contenente sp(A). Persino quando lo spazio vettoriale V è di dimensione finita, può accadere che esso non sia decomponibile come somma diretta di rette stabili per un ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ANALISI FUNZIONALE – SPAZIO VETTORIALE – RAGGIO SPETTRALE – DIAGONALIZZABILE – PIANO COMPLESSO
Mostra altri risultati Nascondi altri risultati su autovalore (4)
Mostra Tutti

scalare

Dizionario delle Scienze Fisiche (1996)

scalare scalare [agg. e s.m. Der. del lat. scalaris, nel signif. figurato "che varia secondo una scala graduata", da scala "scala"] [ALG] In contrapp. a vettoriale e tensoriale, di grandezza che è univocamente [...] dei moduli) per due vettori equiparalleli e nullo per due vettori ortogonali fra loro. La nozione di prodotto s. si generalizza a spazi vettoriali reali qualsiasi V; dati tre vettori v₁, v₂, v₃ ∈V, è lo s. reale (v₁, v₂) che ha le seguenti proprietà ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – RELATIVITA E GRAVITAZIONE – ALGEBRA

tensoriale

Dizionario delle Scienze Fisiche (1996)

tensoriale tensoriale [agg. Der. di tensore "che è relativo a un tensore, che ha carattere di tensore"] [ALG] Calcolo t.: l'insieme delle regole per utilizzare i tensori nelle applicazioni geometriche [...] del campo elettromagnetico), il tensore energia-impulso nella relatività ristretta, ecc. ◆ [ALG] Prodotto t. tra due spazi vettoriali: dati due spazi vettoriali qualunque Vn, Vm, di dimensioni rispettive n, m, entrambi su K, il loro prodotto t., che ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – ALGEBRA

teoria delle rappresentazioni

Enciclopedia della Scienza e della Tecnica (2008)

teoria delle rappresentazioni Luca Tomassini Teoria che studia omomorfismi di semigruppi (e in particolare gruppi), algebre o altre strutture algebriche nel corrispondente insieme degli endomorfismi [...] astratte a partire da modelli concreti (fondamentale a riguardo il caso dei gruppi e algebre di matrici su spazi vettoriali a dimensione finita), la teoria delle rappresentazioni mira a classificare tutte le possibili realizzazioni concrete di tali ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: TRASFORMAZIONI LINEARI – ANALISI FUNZIONALE – SPAZIO VETTORIALE – SOMMA DIRETTA – ENDOMORFISMI
Mostra altri risultati Nascondi altri risultati su teoria delle rappresentazioni (1)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 9
Vocabolario
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali