• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
3 risultati
Tutti i risultati [24]
Analisi matematica [2]
Matematica [11]
Fisica [6]
Fisica matematica [2]
Filosofia [3]
Storia del pensiero filosofico [2]
Algebra [2]
Metafisica [1]
Storia della fisica [1]
Storia della matematica [1]

spazio di Hilbert

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Hilbert Arrigo Cellina Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] , che associa a due vettori un numero reale (questo numero è zero se i due vettori sono ortogonali). Uno spazio di Hilbert ℋ è uno spazio di Banach che generalizza il normale piano euclideo, ossia su cui è definito un prodotto scalare. Si tratta di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – CLASSI DI EQUIVALENZA – TEOREMA DI PITAGORA – PRODOTTO SCALARE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su spazio di Hilbert (1)
Mostra Tutti

ortogonale

Dizionario delle Scienze Fisiche (1996)

ortogonale ortogonale [Der. del lat. orthogonus, dal gr. orthog✄ònios "ad angolo retto", comp. di orthós "dritto" e g✄onía "angolo"] [ALG] Qualifica di ciascuno di due enti che formano tra loro un angolo [...] gli assi siano, come per lo più accade, mutuamente ortogonali: v. fibrati: II 568 e. ◆ [ALG] Sistema o.: in uno spazio hilbertiano, sistema nel quale tutti gli elementi sono a due a due o., cioè il loro prodotto scalare è nullo. ◆ [ALG] Sistemi o ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

hilbertiano

Dizionario delle Scienze Fisiche (1996)

hilbertiano hilbertiano [agg. Der. del cognome di D. Hilbert] [ALG] [ANM] Qualifica di enti e nozioni introdotti da D. Hilbert, equivalente a "di Hilbert": spazio h. o spazio di Hilbert, ecc. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali