spazio separabile
spazio separabile spazio topologico che contiene un sottoinsieme numerabile (può essere messo in corrispondenza biunivoca con N) e denso (ogni elemento dello spazio appartiene al sottoinsieme [...] numerabile e denso. Più in generale lo spazio Rn è separabile perché contiene il sottoinsieme Qn denso e numerabile. Gli spazi generalmente considerati in analisi e geometria sono separabili. Uno spaziodi → Hilbert è separabile se e solo se possiede ...
Leggi Tutto
spazio completo
spazio completo spazio metrico X in cui ogni successione di → Cauchy risulta convergente a un elemento appartenente a X. L’insieme R dei numeri reali è uno spazio metrico completo, mentre [...] l’insieme Q dei numeri razionali è uno spazio metrico non completo (→ completezza). Uno spazio normato e completo nella metrica indotta dalla norma è uno spaziodi → Hilbert. ...
Leggi Tutto
fìsica matemàtica Disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici.
Abstract di approfondimento da Fisica matematica di Gianfausto Dell’Antonio (Enciclopedia [...] la conseguente descrizione dello spaziodiHilbert associato al campo elettromagnetico ‘quantizzato’ come somma diretta dispazi, parametrizzati da un indice n intero, ciascuno descritto in termini di numero di occupazione di fotoni di frequenza nL-1 ...
Leggi Tutto
Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] delle fasi non ha più senso e invece si pensa solo all’insieme delle grandezze osservabili: esse sono descritte da operatori lineari su uno spaziodiHilbert e gli insiemi statistici sono definiti in termini dell’operatore che descrive l’energia ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] dinamiche del sistema, funzioni della qn e pn, divengono nella teoria quantistica operatori su uno spazio vettoriale, detto spaziodiHilbert, i cui elementi corrispondono ai possibili stati del sistema fisico. Il problema generale della dinamica ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] o. svolgono un ruolo fondamentale nella meccanica quantistica, nel cui schema teorico gli stati di un sistema sono rappresentati dai vettori di uno spaziodiHilbert ℋ e le sue variabili dinamiche da o. lineari in ℋ (➔ meccanica); in questo contesto ...
Leggi Tutto
È il complesso delle singole posizioni giuridiche spettanti alla persona nella famiglia, nello Stato e nella comunità giuridica. Fin dalle origini dello Stato moderno gli atti dello s. civile rispondono [...] misurate costituiscono un insieme completo, lo s. del sistema è descritto, a meno di una costante moltiplicativa, da un unico vettore dello spaziodiHilbert degli s. (➔ spazio); nel caso contrario il sistema è detto trovarsi in uno s. misto, la ...
Leggi Tutto
simmetria Distribuzione ordinata delle parti di un oggetto tale che si possa individuare un elemento geometrico (un punto, una linea, una superficie) rispetto al quale a ogni punto dell’oggetto posto da [...] quantistica una simmetria, per le definizioni date sopra, deve trasformare lo spaziodiHilbert degli stati di un sistema in sé stesso, lasciando invariate le probabilità di transizione tra gli stati, cioè i moduli quadrati dei prodotti scalari fra ...
Leggi Tutto
spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo.
Botanica
S. biologico Lo s. ottenuto dalle [...] ; per es., vale l’uguaglianza f(σ(T))=σ(f(T)) (teorema dell’applicazione spettrale). Se T è un operatore chiuso in uno spaziodiHilbert, l’insieme dei numeri complessi tali che l’immagine λI−T non è chiusa si dice s. essenziale, si indica con σε(T ...
Leggi Tutto
spin Termine («rotazione») introdotto inizialmente per indicare il momento della quantità di moto intrinseco dell’elettrone, ipotizzato (1925) da S.A. Goudsmit e G.E. Uhlenbeck allo scopo di dar conto [...] un ente matematico, detto spinore o, anche, spinore di Pauli, caratterizzato da specifiche proprietà di trasformazione sotto le rotazioni spaziali. Gli operatori che agiscono sullo spaziodiHilbert degli stati della particella diventano matrici 2×2 ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...