La seconda rivoluzione scientifica: matematica e logica. I problemi diHilbert e la matematica del nuovo secolo
David E. Rowe
I problemi diHilbert e la matematica del nuovo secolo
Problemi matematici [...] come somma di quadrati di funzioni reali definite positive. L'ultimo problema di questo gruppo riguarda i tipi di gruppi di trasformazione che possono sorgere in uno spazio euclideo n dimensionale.
Nel gruppo finale di problemi Hilbert prendeva in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La matematica negli Stati Uniti
Joseph W. Dauben
La matematica negli Stati Uniti
La matematica all'inizio del secolo
All'inizio del XX sec. [...] intellettuali cominciò a dirigersi fuori dalla Germania. Nello spaziodi un giorno la Germania fu trasformata da un centro mondiale per la scienza e la matematica in un 'macello'. David Hilbert (1862-1943) non esitò a riconoscerlo quando un ufficiale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] , rette e piani allo spazio in modo che tutti gli altri assiomi siano ancora soddisfatti. In una nota Hilbert osserva: "Del resto, nel corso delle presenti ricerche non ci siamo serviti in alcun luogo di questo assioma" (Hilbert 1971, p. 44); una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] . La teoria degli spazidiHilbert, per esempio, avrebbe fornito il necessario presupposto teorico per i processi di approssimazione di funzioni. Il celebre teorema di Weierstrass del 1885 sull'approssimazione di funzioni continue mediante polinomi ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1895) adottò lo stesso approccio nello studio dello spazio a 5 dimensioni delle coniche del piano. I geometri avevano da tempo compreso che lo spaziodi tutte le curve piane di grado n forma una varietà di dimensione (n+3)n/2 ma soltanto verso il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I luoghi e le istituzioni
Umberto Bottazzini
I luoghi e le istituzioni
Nei decenni che separano l'ultimo quarto del XIX sec. dalla Seconda guerra [...] fioritura della 'scuola polacca' di logica e matematica dura tuttavia lo spaziodi un ventennio e si conclude più", è l'amara risposta diHilbert al gerarca nazista che gli chiede quale sia la situazione di quella scienza a Gottinga, 'liberata ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'intuizionismo di Brouwer
Anne L. Troelstra
L'intuizionismo di Brouwer
Nella dissertazione Over de Grondslagen der Wiskunde (I fondamenti della [...] intuizionista, tesi su argomenti quali la topologia, la teoria della misura, la teoria degli spazidiHilbert, l'integrale di Radon e la geometria affine. Dopo il 1974 interessanti contributi sono stati forniti da Willem H.M. Veldman, che ha studiato ...
Leggi Tutto
geometria
geometria parte della matematica che studia le figure, lo spazio in cui sono inserite e le loro proprietà, relazioni e trasformazioni.
Le origini
Secondo lo storico greco Erodoto (v secolo [...] con caratteristiche speciali, che si rivelano utili in alcuni settori di indagine (spazidi Banach, diHilbert, di Hausdorff, spazi normati, spazi metrici...). Alcune specializzazioni relativamente moderne della geometria si sono poi affermate come ...
Leggi Tutto
ASCOLI, Guido
Nicola Virgopia
Nato a Livorno il 12 dic. 1887, studiò a Pisa e ivi si laureò a soli 20 anni (1907) svolgendo con L. Bianchi una tesi di laurea sulle singolarità delle funzioni analitiche. [...] , in Giornale di Matem., LIII (1915), pp. 203-208: riprendendo talune ricerche diHilbert, mostra come si applicabile ad una larga classe dispazi funzionali, è dimostrato un teorema di F. Riesz relativo al caso di funzioni continue.
Sulla teoria ...
Leggi Tutto
geometria euclidea
geometria euclidea locuzione con la quale si intende in primo luogo la sistemazione su basi ipotetico-deduttive della geometria del piano e dello spazio operata da Euclide (sec. III [...] nei primi sei libri, mentre quella dello spazio negli ultimi tre. Tutta l’opera di collegamento; assiomi di ordinamento; assiomi di congruenza; assioma della parallela; assiomi di continuità (→ Hilbert, assiomi di). Nel sistema assiomatico diHilbert ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...