Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La logica e i fondamenti della matematica tra Ottocento e Novecento
Mario Piazza
I fondamenti della geometria
Nella seconda metà dell’Ottocento, in tutta Europa il baricentro delle ricerche geometriche [...] Egli difende la pregnanza intuitiva della nozione dispazio a n dimensioni nel segno di una concezione ‘genetica’: se un , I geometri italiani e i “Grundlagen der Geometrie” diHilbert, in Atti del XVI Congresso dell’Unione matematica italiana, ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] di pubblicare lavori di matematica 'applicata'. Tuttavia di fatto sono di gran lunga prevalenti gli articoli di matematica 'pura', come quelli di algebra e di analisi di Abel, e quelli di Steiner di geometria proiettiva. Per dare spaziodiHilbert. ...
Leggi Tutto
Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] sarà elementarmente equivalente a una struttura ℝ+ di cardinalità maggiore e ‒ per un teorema diHilbert ‒ ogni campo ordinato archimedeo è in collegamento con le applicazioni alla teoria degli spazidi Banach iniziate da Jean-Louis Krivine e allo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] due insiemi di numeri, il numerabile e il continuo". Il problema diHilbert evidenzia il terzo motivo di interesse della stata data risposta negativa al problema di Suslin, che, dal 1920, chiedeva se ogni spazio topologico connesso e con la condizione ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi diHilbert e la matematica del nuovo secolo
David E. Rowe
I problemi diHilbert e la matematica del nuovo secolo
Problemi matematici [...] come somma di quadrati di funzioni reali definite positive. L'ultimo problema di questo gruppo riguarda i tipi di gruppi di trasformazione che possono sorgere in uno spazio euclideo n dimensionale.
Nel gruppo finale di problemi Hilbert prendeva in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La matematica negli Stati Uniti
Joseph W. Dauben
La matematica negli Stati Uniti
La matematica all'inizio del secolo
All'inizio del XX sec. [...] intellettuali cominciò a dirigersi fuori dalla Germania. Nello spaziodi un giorno la Germania fu trasformata da un centro mondiale per la scienza e la matematica in un 'macello'. David Hilbert (1862-1943) non esitò a riconoscerlo quando un ufficiale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] , rette e piani allo spazio in modo che tutti gli altri assiomi siano ancora soddisfatti. In una nota Hilbert osserva: "Del resto, nel corso delle presenti ricerche non ci siamo serviti in alcun luogo di questo assioma" (Hilbert 1971, p. 44); una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] . La teoria degli spazidiHilbert, per esempio, avrebbe fornito il necessario presupposto teorico per i processi di approssimazione di funzioni. Il celebre teorema di Weierstrass del 1885 sull'approssimazione di funzioni continue mediante polinomi ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1895) adottò lo stesso approccio nello studio dello spazio a 5 dimensioni delle coniche del piano. I geometri avevano da tempo compreso che lo spaziodi tutte le curve piane di grado n forma una varietà di dimensione (n+3)n/2 ma soltanto verso il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I luoghi e le istituzioni
Umberto Bottazzini
I luoghi e le istituzioni
Nei decenni che separano l'ultimo quarto del XIX sec. dalla Seconda guerra [...] fioritura della 'scuola polacca' di logica e matematica dura tuttavia lo spaziodi un ventennio e si conclude più", è l'amara risposta diHilbert al gerarca nazista che gli chiede quale sia la situazione di quella scienza a Gottinga, 'liberata ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...