• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
113 risultati
Tutti i risultati [383]
Matematica [113]
Fisica [85]
Fisica matematica [43]
Geometria [40]
Algebra [37]
Temi generali [35]
Analisi matematica [34]
Storia della matematica [27]
Astronomia [23]
Arti visive [24]

carta

Dizionario delle Scienze Fisiche (1996)

carta carta [Der. del lat. charta, dal gr. chártes, originar. "foglio di papiro"] [LSF] Prodotto industriale, fabbricato con sostanze fibrose in forma di fogli sottili, per scrivere, stampare, involgere, [...] (c. dei vetri, di reattanza, ecc.). ◆ [ALG] Dato uno spazio topologico T, un suo punto P e un intorno di questo I(P Mercatore) e le due calotte polari per proiezione sopra il piano tangente a ciascuno dei poli e per centro di proiezione il centro ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su carta (8)
Mostra Tutti

struttura di spin

Enciclopedia della Scienza e della Tecnica (2008)

struttura di spin Luca Tomassini Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] principale π:P→M è ottenuto considerando l’azione di SOn su T*(M), il duale del fibrato tangente T(M) alla varietà M ossia lo spazio dei campi (regolari) di forme lineari sui campi vettoriali (regolari) di M. Similmente, si possono definire strutture ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: VARIETÀ RIEMANNIANA – COMPONENTE CONNESSA – DERIVATE COVARIANTI – VETTORI ORTONORMALI – FIBRATO VETTORIALE

ovaloide

Enciclopedia on line

In matematica, superficie chiusa e limitata dello spazio ordinario che sia attraversata da ogni retta al più in due punti; un o. è perciò la frontiera di un corpo convesso, cioè di una parte convessa dello [...] spazio. Si suppone poi, di solito, che l’o. possieda in ogni punto un piano tangente e che questo sia variabile con continuità. Sono esempi di o. gli ellissoidi e le sfere. Gli o. godono di interessanti proprietà geometriche, tra cui: a) indicando ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: MATEMATICA

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] (v. varietà, loc. cit., p. 1070), riferiti a x, appartengono allo s. v. Tx tangente in x a Vn e, risultando linearmente indipendenti, costituiscono una base per detto spazio, la "base naturale" indotta in Tx dal sistema di coordinate xi. Qualora si ... Leggi Tutto

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] definisce le classi caratteristiche per il fibrato tangente di una varietà complessa, estensione delle classi introduce la mappa duale: se f è un'applicazione da uno spazio vettoriale X in ℝ, e X* è lo spazio duale di X, allora la mappa duale f * : X ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La scienza bizantina e latina: la nascita di una scienza europea. L'infinito e l'eternità del mondo

Storia della Scienza (2001)

La scienza bizantina e latina: la nascita di una scienza europea. L'infinito e l'eternita del mondo Johannes M.M.H. Thijssen L'infinito e l'eternità del mondo La questione dell'infinito si è imposta [...] e infiniti Aristotele intendeva riferirsi a mobili che percorrono rispettivamente spazi finiti e infiniti. La maggior parte degli autori del XIV con l'incremento o il decremento di questi angoli tangenti (cioè tracciando circoli più o meno ampi a ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

L'Età dei Lumi: matematica. I Principia di Newton nel Settecento

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento Niccolò Guicciardini I Principia di Newton nel Settecento Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] giostra muovendoci di moto rettilineo uniforme lungo la tangente alla nostra traiettoria circolare. Newton non fa l per mezzo di un agente spirituale che pervade tutto lo spazio. Tempo e spazio non sono misure convenzionali umane, ma la sede dell' ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

BENEDETTI, Giovanni Battista

Dizionario Biografico degli Italiani (1966)

BENEDETTI, Giovanni Battista Vincenzo Cappelletti Nacque a Venezia il 14 ag. 1530; "patrizio veneto" si qualificò in alcuni scritti. Secondo il Bordiga (pp. 587 s.), non sarebbe, tuttavia, possibile [...] o. Ognuna di queste sfere percorrerà, in un dato tempo, lo spazio percorso da g. Il Galilei avrebbe poi fatto l'esempio analogo di due corpi a persistere nello stato di movimento secondo la tangente alla loro traiettoria: "quia quodvis grave corpus, ... Leggi Tutto
CATEGORIA: BIOGRAFIE

integrale

Dizionario delle Scienze Fisiche (1996)

integrale integrale [s.m. e agg. Der. del lat. integralis, da integer "intero"] [LSF] Relativo alla considerazione di una totalità di elementi o che concorre alla costituzione di questa totalità. ◆ [ANM] [...] per tre variabili, ecc.). Suscettibile di un'interpretazione geometrica nello spazio ordinario è soltanto l'i. doppio, relativo a una funzione ha preso le mosse dalla determinazione della pendenza della tangente a una curva in un suo punto; il ... Leggi Tutto
CATEGORIA: FISICA DEI PLASMI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – TEMI GENERALI – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] scalare che associa a ogni coppia di vettori un elemento del campo. ◆ [ALG] Spazio v. tangente: v. varietà differenziabili infinito-dimensionali: VI 493 f. ◆ [ALG] Spazio v. topologico: v. varietà differenziabili infinito-dimensionali: VI 492 c. ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
1 2 3 4 5 6 7 8 ... 10 ... 12
Vocabolario
derivata
derivata s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...
tangenziale
tangenziale agg. [der. di tangenza]. – Genericam., che è tangente, o che ha comunque relazione con una retta tangente, con un piano o con un altro ente geometrico tangente. In partic.: 1. In geometria piana, coordinate t. (o coordinate di...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali