• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
113 risultati
Tutti i risultati [383]
Matematica [113]
Fisica [85]
Fisica matematica [43]
Geometria [40]
Algebra [37]
Temi generali [35]
Analisi matematica [34]
Storia della matematica [27]
Astronomia [23]
Arti visive [24]

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] che una connessione permette di riconoscere in ogni punto dello spazio totale di un fibrato lo spazio tangente alla fibra e allo spazio base. Viceversa, questo spezzamento dello spazio tangente sullo spazio totale dà luogo a una connessione. L'altro ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] curva regolare c:[0,1]→Mν dove c∙ indica il vettore tangente alla curva c(t). La lunghezza di una curva regolare a estremi p,q. Con questa distanza la varietà Mν diviene uno spazio metrico. Due varietà riemanniane Mν1 e Mν2 si dicono isometriche ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

curvatura scalare

Enciclopedia della Scienza e della Tecnica (2008)

curvatura scalare Luca Tomassini Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] il prodotto di Lie. La derivata covariante è strettamente connessa con la nozione di trasporto parallelo di un vettore in TMνπ, lo spazio tangente a Mν in p, e la quantità R(X,Y)Z (calcolata in uno specifico punto p) può essere considerata una misura ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: APPLICAZIONE MULTILINEARE – SIMBOLI DI CHRISTOFFEL – VARIETÀ RIEMANNIANA – DERIVATA COVARIANTE – TRASPORTO PARALLELO

varieta kahleriana

Enciclopedia della Scienza e della Tecnica (2008)

varietà kähleriana Gilberto Bini Una metrica riemanniana su una varietà complessa M è detta hermitiana se definisce un prodotto interno hermitiano su ciascuno spazio tangente. Una metrica hermitiana [...] Kähler associata: è una metrica di Kähler se, e soltanto se, la forma Φ è chiusa, cioè se dΦ=0. Sullo spazio proiettivo ℙn(ℂ) è definita una metrica di Kähler nota sotto il nome di metrica di Fubini-Study. Generalmente una sottovarietà complessa di ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – VARIETÀ KÄHLERIANA – VARIETÀ COMPLESSA

PINCHERLE, Salvatore

Dizionario Biografico degli Italiani (2015)

PINCHERLE, Salvatore Enrico Rogora PINCHERLE, Salvatore. – Nacque a Trieste l’11 marzo 1853 da Mosè ed Evelina Dörfles. Di famiglia ebraica frequentò le scuole medie e il liceo Imperiale a Marsiglia, [...] Cercò anche di estendere molti concetti geometrici validi per gli spazi di dimensione finite agli spazi funzionali, definendo curve, superfici e sottovarietà non lineari, spazio tangente e osculatore, gruppi continui di operatori e loro ‘operazioni ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: CONSIGLIO NAZIONALE DELLE RICERCHE – SCUOLA NORMALE SUPERIORE DI PISA – EQUAZIONI DIFFERENZIALI LINEARI – CORRISPONDENZA BIUNIVOCA – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su PINCHERLE, Salvatore (3)
Mostra Tutti

fibrato

Dizionario delle Scienze Fisiche (1996)

fibrato fibrato [agg. e s.m. Der. di fibra] [ALG] Nella geometria differenziale, termine corrente (come s.m.) per spazio f., nozione che generalizza quella di varietà prodotto di due varietà differenziabili: [...] [ALG] F. cotangente: il f. che come base ha una varietà differenziabile e come fibra ha lo spazio dei funzionali lineari sullo spazio tangente alla varietà; ha notevoli applicazioni nella meccanica analitica: per es., v. strutture simplettiche su una ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su fibrato (4)
Mostra Tutti

gruppo di Lie

Enciclopedia della Scienza e della Tecnica (2008)

gruppo di Lie Luca Tomassini Un gruppo G sul quale sia definita una struttura di varietà analitica tale che la mappa μ:(x,y)→xy−1 dal prodotto diretto G×G in G stesso sia analitica. In altre parole, [...] (dLh)X(g)=X(hg) per ogni g,h∈G, dove Lh(g)=hg. Tali campi invarianti formano uno spazio vettoriale, che può essere identificato con lo spazio tangente alla varietà G nell’identità e, Te(G). Dotato del prodotto di Lie [X,Y]=XY−YX esso diviene un ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE – VARIETÀ ANALITICA – CAMPO VETTORIALE – SPAZIO EUCLIDEO – CAMPO COMPLESSO
Mostra altri risultati Nascondi altri risultati su gruppo di Lie (1)
Mostra Tutti

varieta simplettiche

Enciclopedia della Scienza e della Tecnica (2008)

varietà simplettiche Luca Tomassini Una varietà differenziabile di dimensione pari M2n dotata di una struttura simplettica (o struttura hamiltoniana), ossia di una forma bilineare (o 2-forma) antisimmetrica [...] sia non degenere e chiusa. Più esplicitamente, per ogni x∈M2n si assume l’esistenza di una forma bilineare Φx:Tx(M2n)×Tx(M2n)→ℝ sullo spazio tangente Tx(M2n) a M2n nel punto x tale che Φx(Xx,Yx)=−Φx(Yx,Xx) per Xx,Yx∈Tx(M2n) (antisimmetria) e Φx(Xx,Yx ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – MECCANICA HAMILTONIANA – SPAZIO DELLE FASI – PRODOTTO SCALARE – CAMPI VETTORIALI

segnatura

Dizionario delle Scienze Fisiche (1996)

segnatura segnatura [Der. del lat. signatura, da signare "firmare"] [FSN] Fattore che compare nella legge dell'ampiezza di diffusione di particelle elementari: v. matrice S: III 648 c. ◆ [ALG] S. di [...] degli autovalori negativi della metrica. ◆ [ALG] S. lorentziana: dicesi della metrica di una varietà M pseudo-riemanniana quando localmente lo spazio tangente a M abbia, in qualche base, come tensore metrico gμν il tensore g00=-1, gμμ=1 μ=1, 2, 3 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA
Mostra altri risultati Nascondi altri risultati su segnatura (1)
Mostra Tutti

tangente

Dizionario delle Scienze Fisiche (1996)

tangente tangènte [agg. e s.f. Der. del part. pres. tangens -entis del lat. tangere "toccare"] [ALG] Di ente (retta, linea, superficie, ecc.) che abbia un particolare comportamento con altro ente della [...] in un punto: quando in questo punto le due curve hanno la stessa tangente. ◆ [ANM] T. asintotica: → asintotico. ◆ [ALG] T. risoluzione numerica di equazioni lineari: v. calcolo numerico: I 409 e. ◆ [ALG] Spazio t.: v. varietà differenziali: VI 489 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su tangente (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 12
Vocabolario
derivata
derivata s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...
tangenziale
tangenziale agg. [der. di tangenza]. – Genericam., che è tangente, o che ha comunque relazione con una retta tangente, con un piano o con un altro ente geometrico tangente. In partic.: 1. In geometria piana, coordinate t. (o coordinate di...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali