Meccanica e termomeccanica razionali
CClifford A. Truesdell
di Clifford A. Truesdell
SOMMARIO: 1. Concetti e metodi: a) la natura delle scienze razionali; b) la nascita, l'apogeo e il lento declino [...] tra loro tangenti in quel punto. Un classico teorema diCauchy assicura l'esistenza di un campo tensoriale degli sforzi T tale che
t = teoria, il metodo si dice inverso. La teoria di Eulero sulla successione dei toni emessi da un corno è un esempio ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] steepest descent, già utilizzato da Cauchy nel 1847. Solo nel 1971, grazie a un lavoro di John Reid, il metodo del nel 1935 da P. Erdős e P. Turán: se una successionedi interi non contiene tre elementi in progressione aritmetica, ha densità ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] definire un numero reale α come una successionedi numeri razionali α={a0, a1, a2, ...} che soddisfi la condizione diCauchy. Si dice che α è uguale a un'altra successionedi numeri razionali di questo tipo, β={b0, b1, b2, ...}, se la differenza tra ...
Leggi Tutto
Fisica matematica
EEugene P. Wigner
di Eugene P. Wigner
Fisica matematica
sommario: 1. Introduzione. 2. Il ruolo della matematica nella fisica. a) Uno schema dei concetti fondamentali della fisica. [...] analitiche, il cui più importante teorema (quello diCauchy) risale a circa 150 anni fa. La sua si ottiene l'operazione T(SR). Alla fine si è ottenuta la medesima operazione, ossia la successionedi tutte e tre, R, S e T. Quindi si ha che
(TS) R = ...
Leggi Tutto
L'Eta dei Lumi: matematica. Meccanica e ingegneria
Massimo Corradi
Meccanica e ingegneria
Alla fine del XVII sec. e forse anche agli inizi di quello successivo, prima della formalizzazione del calcolo [...] stimolato dalla grande perizia matematica di personaggi come Cauchy e Saint-Venant. Tale progetto di assimilare il moto di un corpo a una successionedi piccoli movimenti uniformi. In questa prospettiva, la conclusione di Newton è che la soluzione di ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] i prodotti di permutazioni (ottenuti applicando in successione due permutazioni) e osserva che il risultato dipende dall'ordine di applicazione: in generale, se A e B sono permutazioni, AB≠BA. Cauchy denota i prodotti della permutazione di A con ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] certi numeri primi compaiono e si propagano come divisori di termini della successione un. In particolare, se un numero p di definire gli equivalenti del teorema dei residui diCauchy e del teorema di Riemann-Roch. Egli prendeva in esame le idee di ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] n>n1 e per ogni m intero positivo". A ognuna di queste successioni 'fondamentali' (oggi dette 'diCauchy') Cantor associava un numero b, definito a meno di una relazione di equivalenza per le successioni e il campo dei numeri reali era l'insieme ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] dei numeri reali, definiti per mezzo di 'successioni fondamentali', ossia successionidi numeri razionali, che soddisfano la condizione di convergenza diCauchy. L'insieme di quei numeri soddisfa un assioma di continuità, ed è a questo punto ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] y+β,z+γ,…)−f(x,y,z,…) è anch'essa infinitamente piccola. (Cauchy 1821a, pp. 45-46)
Egli proseguiva affermando che, se α,β, ecc successionedi proposizioni che porta al teorema finale, in quanto ciascuno di essi è interessante di per sé nello studio di ...
Leggi Tutto