Banach Stefan
Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] a. ◆ [ALG] Spazio di B.: spazio vettoriale che gode delle proprietà di essere normato e completo, cioè tale che ogni successione di Cauchy converge a un elemento dello spazio; per es., uno spazio di Hilbert: v. funzionale, analisi: II 771 a. ◆ [ALG ...
Leggi Tutto
Biologia e medicina
Sistema di fattori di natura proteica presenti nel plasma sanguigno, suscettibili, in particolari condizioni, di essere attivati e di dar luogo a una complessa reazione. Il c. è importante [...] la sua trasformazione in una molecola dotata di attività enzimatica, che trasforma il secondo componente, e così in successione. La complessa reazione così avviata provoca la lisi delle cellule che recano sulla superficie anticorpi contro la membrana ...
Leggi Tutto
OPERATIVA, RICERCA (App. III, 11, p. 315)
Aldo Ruscitti
Gli sviluppi recenti della r. o. possono, ai fini di una loro sintetica comprensione (e sia pure correndo il rischio di semplificazioni arbitrarie) [...] .
Un padre di famiglia, prima di recarsi al lavoro, accompagna a scuola i suoi due figli Paolo e Carlo. La successione delle attività necessarie a tal fine è presentata nella rete cosiddetta PERT (Program Evaluation and Review Technique), ove a ogni ...
Leggi Tutto
DELL'AGNOLA, Carlo Alberto
Francesco Saverio Rossi
Nacque a Taibon Agordino (Belluno) il 23 giugno 1871 da Giovanni Battista e da Maria Soccol.
Compiuti gli studi medi a Belluno, si trasferì all'università [...] di Arzebi, Milano 1908; Le funzioni discontinue e il teorema di Baire, Venezia 1909 e Sulla convergenza uniforme di una successione di funzioni continue, ibid. 1929, un tema sul quale ritornò più volte; così pure Sulla serie di polinomi, ibid. 1900 ...
Leggi Tutto
Matematico e filosofo (Leopoli 1883 - Boston 1953), fratello di Ludwig. Professore di tecnologia in varie univ. tedesche, poi di matematica all'univ. di Berlino; con l'avvento di Hitler al potere passò [...] M. l'uso del termine probabilità è in primo luogo legato all'esistenza di un collettivo, ovvero di una successione di eventi uniformi che differiscono per certi attributi osservabili. Una volta così ristretto il campo di applicazione della nozione ...
Leggi Tutto
matematica Operazione (anche denominata integrazione finita) mediante la quale si passa da una funzione data f(x) a una funzione F(x), somma della f(x), tale che la differenza finita ΔF della funzione [...] modo di uno stimolo unico di intensità pari a quella della loro somma algebrica, se confluiscono sul neurone contemporaneamente da più afferenze (s. spaziale) o se lo raggiungono attraverso una sola sinapsi, in rapida successione (s. temporale). ...
Leggi Tutto
Finito
Antonio Machì
(XV, p. 399)
Matematica del finito
Diversi filoni della ricerca matematica che mostrano particolare vitalità si possono ricondurre all'interesse per i problemi del finito. L'analisi [...] aritmetica. Il risultato corrispondente in teoria dei gruppi è il teorema di Jordan-Hölder: in un gruppo finito si può costruire una successione G.G₁.G₂….Gr₋₁.Gr5516, dove Gi è un sottogruppo normale nel precedente Gi₋₁ e tale che i quozienti Gi₋₁/Gi ...
Leggi Tutto
Vicino Oriente antico. La matematica
Jöran Friberg
La matematica
Gli esercizi metro-matematici nel III millennio
La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] e anche in una tavola di costanti.
Un ingegnoso algoritmo di duplicazione e divisione (a metà) veniva adoperato per produrre successioni di coppie di numeri sessagesimali regolari reciproci (n, n′). Per esempio, a partire da una coppia iniziale (2.05 ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] a μ se per ogni compatto K di E esiste un insieme μ-trascurabile N in K e una partizione di K∩⊂N formata da una successione (Kn) di insiemi compatti tali che la restrizione di f a ogni Kn sia continua. La parte A è detta misurabile se lo è la ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] . Questi ultimi permettono di formulare rigorosamente la caratterizzazione iniziale: un’operatore è compatto se esiste una successione di operatori con immagine di dimensione finita convergente a esso nella norma degli operatori. Notiamo che tali ...
Leggi Tutto
successione
successióne s. f. [dal lat. successio -onis, der. di succedĕre «succedere»]. – 1. Il succedere ad altri, cioè il subentrare, il prendere il posto di un altro in una carica, in un ufficio, in un titolo, nella proprietà di un bene,...
ciclo1 s. m. [dal lat. tardo cyclus, gr. κύκλος «cerchio, giro»]. – 1. In matematica, generalizzazione del concetto di linea chiusa; in algebra, sottogruppo ciclico di un gruppo. 2. In botanica, il complesso dei fillomi (foglie, antofilli, brattee)...