• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
5 risultati
Tutti i risultati [30]
Analisi matematica [5]
Matematica [13]
Storia della matematica [4]
Biografie [3]
Fisica [4]
Informatica [4]
Storia della fisica [3]
Programmazione e programmi [2]
Fisica matematica [2]
Matematica applicata [2]

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] -Schmidt, l'equazione ausiliaria [41] è risolta prima in ũ per ogni ū fissata (usando il teorema di punto fisso o il teorema delle funzioni implicite, o la teoria del punto critico) e la soluzione viene sostituita nella [42] per fornire un'equazione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

Malgrange Bernard

Dizionario delle Scienze Fisiche (1996)

Malgrange Bernard Malgrange 〈malgràngë〉 Bernard [STF] (n. 1928) ◆ [ANM] Teorema di preparazione di M.: afferma che data una funzione di classe C∞ in un intorno dell'origine di Rn+1 che soddisfi F(t, [...] che qF(t, x₁, ..., xn)= tk+Σk-1i=0 λi(x₁, ..., xn)ti, con λi(0, ..., 0)=0 per ogni i=1, ..., n; questo risultato (che generalizza un analogo risultato di K. Weierstrass per le funzioni analitiche) è importante nella teoria delle funzioni implicite. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] caso in cui le nuove coordinate erano funzioni implicite delle vecchie, ricorrendo essenzialmente alla regola di Cramer possiamo citare il risultato oggi conosciuto sotto il nome di teorema della media aritmetica di Gauss: "Se è il potenziale di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] José L. Massera (1915-2002) nel 1949 dimostrano teoremi inversi di quelli di Ljapunov, facendo vedere che la stabilità e la stabilità asintotica dell'origine implicano l'esistenza di opportune funzioni di Ljapunov. Il secondo metodo di Ljapunov è uno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Il calcolo delle variazioni

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Il calcolo delle variazioni Ivor Grattan-Guinness Il calcolo delle variazioni Il calcolo in una e più variabili Una volta sviluppata la teoria della differenziazione e integrazione [...] implicite ‒ esposte nell'ambito della determinazione per via geometrica, a partire dalle leggi di Newton ‒ delle delle funzioni. Per esempio, esso veniva usato per trovare una funzione q tale che per una data funzione suoi scritti il teorema (o ipotesi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
Vocabolario
princìpio
principio princìpio s. m. [dal lat. principium, der. di princeps -cĭpis nel sign. di «primo»: v. principe]. – 1. a. L’atto e il fatto di cominciare, inizio: il p. di una azione, di un’impresa; il p. di una nuova vita; dare p., avviare, intraprendere...
vivo
vivo agg. e s. m. [lat. vīvus, corradicale di vīvĕre «vivere»]. – 1. agg. Che vive, dotato di vita, che ha le funzioni caratteristiche della vita proprie degli organismi viventi sia animali e umani sia vegetali (contrapp. spesso, in modo esplicito...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali