• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
8 risultati
Tutti i risultati [20]
Algebra [8]
Matematica [16]
Storia della matematica [8]
Geometria [3]
Analisi matematica [3]
Filosofia [1]
Storia del pensiero filosofico [1]
Statistica e calcolo delle probabilita [1]
Storia dell astronomia [1]
Biologia [1]

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] cui F sia una estensione di Galois abeliana del corpo razionale ℚ. Teoria del corpo di classi su ℚ. Le estensioni di Galois abeliane di ℚ sono descritte dal teorema di Kronecker-Weber: ogni estensione di Galois abeliana F di ℚ è contenuta in un corpo ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia della Scienza e della Tecnica (2007)

Fermat, ultimo teorema di Massimo Bertolin "Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] (viste come sottocampi del campo complesso ℂ), e sia ℚ(ζ∞) l'unione di tutti i campi ciclotomici. Grazie al teorema di Kronecker-Weber, ℚ(ζ∞) è l'estensione abeliana massimale di ℚ. Se Gℚ indica Gal(ℚ−/ℚ), ne consegue che Gal(ℚ(ζ∞)/ℚ) si identifica ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – PETER GUSTAV, LEJEUNE DIRICHLET – DOMINI A FATTORIZZAZIONE UNICA – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

campi di numeri

Enciclopedia della Scienza e della Tecnica (2008)

Campi di numeri Massimo Bertolini Sia α un numero algebrico, cioè un numero complesso che soddisfa un’equazione algebrica p(x)=0, dove p(x) è un polinomio di grado n≥1 avente coefficienti nel campo [...] al gruppo (ℤ/mℤ)× delle unità nell’anello ℤ/mℤ delle classi di resti modulo m. Il teorema di Kronecker-Weber afferma che ogni estensione di Galois di ℚ, avente gruppo di Galois commutativo, è contenuta in un campo ciclotomico. Dati due campi ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL’ARITMETICA – TEOREMA DI KRONECKER-WEBER – FUNZIONE ESPONENZIALE – EQUAZIONE ALGEBRICA – ERNST EDUARD KUMMER

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] teorema è irrimediabilmente falso per due polinomi in tre variabili. La teoria dei sistemi modulari non è poi così diversa dalla teoria degli ideali, i cui pionieri sono Dedekind e Weber il quale le idee di Kronecker sono penetrate nella moderna ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] di definire gli equivalenti del teorema dei residui di Cauchy e del teorema di Riemann-Roch. Egli prendeva in esame le idee di Kronecker , pp. 151-236. Frei 1989: Frei, Günther, Heinrich Weber and the emergence of class field theory, in: The history ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] di tale sviluppo è il classico trattato di Heinrich Martin Weber anche se per la teoria degli invarianti, per i lavori di David Hilbert, per i fondamenti della teoria dei gruppi di di Kronecker desiderio di formulare in modo algebrico il teorema di De ... Leggi Tutto
CATEGORIA: ALGEBRA

L'Ottocento: matematica. Teoria degli invarianti

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria degli invarianti Leo Corry Teoria degli invarianti L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] suo teorema di finitezza, che era peraltro già stato semplificato dallo stesso Gordan. Un altro aspetto importante dell'approccio di Hilbert era l'uso innovativo di idee precedentemente introdotte nella teoria dei numeri da Leopold Kronecker (1823 ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra Leo Corry L'emergere della concezione strutturale in algebra Il punto di vista strutturale [...] concetto stesso di radice di un'equazione è discusso da Weber utilizzando argomenti propri dell'analisi matematica, come la teoria dei limiti e il concetto di continuità. Troviamo così una discussione del teorema di Sturm sul numero di radici di un ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali