Insieme di linee, reali o ideali, che si intrecciano formando incroci e nodi e dando luogo a una struttura complessa. Più in particolare, infrastruttura tecnica per la distribuzione di un segnale (tipicamente [...] attive), le r. contenenti induttori e condensatori (r. LC) o in base ai tipi di connessione ammessi (vincoli topologici). I procedimenti di sintesi permettono di passare dalla rappresentazione assegnata allo schema completo della r., i cui elementi ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] capitoli autonomi della scienza matematica, o a ricoprire addirittura un intero settore della matematica; così è accaduto per la topologia, che, sorta inizialmente come analysis situs, cioè come g. di posizione, ha oggi assunto il ruolo di uno dei ...
Leggi Tutto
Variazioni, calcolo delle
Gianni Dal Maso
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] i punti stazionari sono le mappe armoniche tra le due varietà, lo studio delle quali è legato a interessanti questioni di topologia e di geometria differenziale.
Superfici cartesiane di area minima
Se u ha derivate parziali continue, l'area del suo ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] dei più profondi e, allo stesso tempo, criptici lavori nella storia della matematica. La confusione tra concetti metrici e topologici, oltre alla mancanza di una chiara definizione di 'grandezza pluriestesa' stavano, secondo Riemann, alla base delle ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] , nelle ipotesi che il valore di J non sia critico e che le superfici di livello siano compatte, che tali superfici hanno la topologia di tori n-dimensionali; infine si verifica che la restrizione su ogni toro invariante del s. d. sia un 'flusso alla ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] bi=dim Hi(M;R), allora
χ(M)=b0−b1+b2=2−b1. (56)
La formula di Gauss-Bonnet (54) mostra che un invariante topologico χ(M) può essere espresso come l'integrale di un invariante geometrico locale K/2π.
Se M è una varietà orientabile chiusa di dimensione ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...