spazio separabile
Luca Tomassini
Un insieme A è detto di cardinalità numerabile se esso può essere posto in corrispondenza biunivoca con l’insieme dei numeri naturali positivi ℕ. Esempi di insiemi numerabili [...] un esempio di insieme di cardinalità non numerabile è quello dei numeri reali ℝ. Uno spazio topologico X, cioè un insieme X sul quale sia assegnata una topologia, è detto separabile se in esso esiste un sottoinsieme A numerabile che sia ovunque denso ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] della curva nei quali le valutazioni sono non nulle. Dedekind e Weber non riuscirono a trovare il modo di introdurre una topologia nell'insieme di tutte le valutazioni associate a un campo di funzioni. Krull estese il concetto di valutazione in modo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] ivi già trovansi in germe la teoria della base e una prima fusione fra le vedute algebrico-geometriche e quelle topologico-trascendenti, ossia due fra gli apporti più caratteristici del Severi" (Segre 1962, p. 115). La 'teoria della base', elaborata ...
Leggi Tutto
Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] ’insieme di altre strutture (si pensi che nell’insieme dei numeri reali sono simultaneamente presenti ben tre diverse strutture: algebrica, topologica e d’ordine; e per es. la relazione di maggiore e minore non è di natura algebrica, ma invece legata ...
Leggi Tutto
teoria dei semigruppi
Luca Tomassini
Un semigruppo è un insieme con una operazione binaria * (comunemente detta moltiplicazione) che soddisfi la proprietà associativa: a*(b*c)=(a*b)*c. Un semigruppo [...] di composizione. Di particolare importanza sono proprio i semigruppi di trasformazioni di spazi dotati di strutture topologiche, quali gli spazi vettoriali topologici o anche di Banach. In questo caso si parla di teoria dei semigruppi di operatori ...
Leggi Tutto
teorema di esistenza degli zeri
Luca Tomassini
Sia f una funzione continua a valori reali su un intervallo chiuso [a,b] della retta reale ℝ e sia c un numero reale compreso tra f(a) e f(b). Il teorema [...] dell’analisi matematica classica. Il teorema può inoltre essere generalizzato al caso di spazi topologici: una funzione continua f:X→ℝ definita su uno spazio topologico connesso X che assuma due valori distinti assume anche ogni valore tra di essi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] di un insieme astratto. In entrambi i casi, la classe di funzioni o l'insieme astratto sono dotati di una struttura topologica che permette l'uso dei concetti di limite e di continuità sulla base dell'estensione alla classe di funzioni o all'insieme ...
Leggi Tutto
Schwartz, Laurent
Luca Dell'Aglio
Matematico francese, nato a Parigi il 5 marzo 1915. Finiti gli studi presso l'École normale supérieure nel 1937, in periodo di guerra fu nominato maître de conférence [...] l'approccio bourbakista al concetto di integrale, S. ha esteso la nozione di misura di Radon al caso di spazi topologici arbitrari e ha studiato le probabilità cilindriche - con la creazione della teoria delle applicazioni 'p-radonificanti' - e vari ...
Leggi Tutto
somma In matematica, il risultato dell’ordinaria operazione di addizione o anche l’operazione stessa; in senso estensivo, si parla spesso di s. anche con riferimento a operazioni che soddisfano le proprietà [...] è sommabile, e in particolare lo spazio L2(E) delle funzioni di quadrato sommabile.
Per serie sommabile ➔ serie.
Nella teoria dei gruppi topologici, una famiglia (xi)i∈I di elementi del gruppo additivo G, con i che varia in un insieme I di indici, si ...
Leggi Tutto
Weil, André
Luca Dell'Aglio
Matematico francese, nato a Parigi il 6 maggio 1906, morto a Princeton il 6 agosto 1998. La sua formazione si svolse fra Parigi, presso l'École normale supérieure, Roma e [...] Bourbaki, di cui fu uno dei fondatori: le sue ricerche hanno contribuito a chiarire profonde connessioni intercorrenti tra topologia, geometria differenziale e geometria analitica complessa, come nel caso degli studi sull'estensione della teoria dell ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...