Krein Mark Grigorjevich
Krein 〈kràin〉 Mark Grigorjevich [STF] (n. 1907) ◆ [ANM] Teorema di K.-Milman: se K è un insieme convesso compatto contenuto in uno spazio vettoriale normato con x∈k punto estremale, [...] se x=(1-t)x₀+tx₁ con t∈(0,1) e x₀, x₁∈K implica x₀=x₁=x, allora K coincide con l'inviluppo convesso chiuso dei suoi punti estremali. ...
Leggi Tutto
fisso
fisso [Der. del part. pass. fixus di figere "fermare"] [LSF] Fermo, non mobile, detto di cosa che non muta di posizione: riferimento f.; figurat., di grandezza che non muta di valore: condensatore [...] ◆ [ANM] Punto f.: di una trasformazione T che agisca su uno spazio topologico X è il punto x₀∈X tale che x₀=Tx₀. Di notevole interesse sono i teoremi che garantiscono l'esistenza di punti f. per T (per es., → contrazione). ◆ [ASF] Stelle f.: denomin ...
Leggi Tutto
Bessel Friedrich Wilhelm
Bessel 〈bèsël〉 Friedrich Wilhelm [STF] (Minden 1784 - Königsberg 1846) Prof. di astronomia (1810) nell'univ. di Königsberg e fondatore del locale Osservatorio astronomico. ◆ [...] ₁; (c) ad argomento immaginario: hanno la forma Iλ(t)=-i-λJλ(it), con i unità immaginaria e sono soluzioni del-l'equazione differenziale t2x..+tx.-(t2+λ2)x=0; la fig. 3 mostra i diagrammi di I₀ e I₁; un secondo tipo di soluzioni, dette anche funzioni ...
Leggi Tutto
convessità generalizzata
Angelo Guerraggio
Termine che designa gli studi tesi a estendere le proprietà delle funzioni convesse (o concave) – almeno quelle ritenute essenziali in un determinato contesto [...] ogni x,y∈C e per ogni t∈[0,1] è soddisfatta la relazione f[tx+(1−t)y]≤ max[f(x),f(y)]. È facile osservare che ogni funzione per ogni x,y∈C e per ogni t∈[0,1] è soddisfatta la relazione f[tx+(1−t)y]≤max[f(x),f(y)]−ta(x,y) dove a è una funzione ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] limitati di F di modo che ∥T∥ - : = sup {∥Tx∥ : ∥x∥ ≤ 1} definirà una norma sullo spazio L ( T ∈ L (H). Come nel cap. 2, § c, l'‛operatore aggiunto' T* di T definisce l'identità (Tx∣ y) = (x∣T*y) (x, y ∈ H ); valgono inoltre le regole (T + S)* = T* ...
Leggi Tutto
omogeneità La condizione di ciò che è omogeneo, sia rispetto ad altri enti, sia rispetto alle sue parti, in quanto vi sia identità, similitudine o quanto meno armonia tra gli oggetti o le parti in questione.
economia [...] x, y, z, … tale che, per ogni scelta di valori delle x, y, z, … e di un’ulteriore variabile t, valga la relazione f(tx, ty, tz, …) ≡ tα f(x, y, z, …), essendo α un numero reale fisso (grado di omogeneità). Una funzione è positivamente omogenea se la ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] differenziabili essenzialmente distinte). Di fondamentale importanza nello studio delle v. differenziabili è la considerazione dello spazio vettoriale tangente Tx alla v. in ogni suo punto x, la cui base è costituita dalle derivate direzionali in x ...
Leggi Tutto