La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] 1872, p. 17). Dal punto di vista algebrico, il problema si traduce nello sviluppo della teoria degli invarianti rispetto al gruppo di trasformazioni 'aggiunto', come dice Klein, alla varietà e ai suoi sottogruppi e nella conseguente classificazione ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] coniche. L’impostazione di Apollonio non è in alcun modo algebrica, riguarda soltanto aspetti qualitativi di tipo geometrico. Se qua e che abbiamo passato in rassegna non fa giustizia della varietà che presenta l’attività nel campo della geometria in ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] Planck', assomiglia più a una rete discreta che a una varietà continua. La lunghezza di Planck è così piccola che, nel 1990. L'incontro tra le sue ricerche sulle tracce delle algebre di von Neumann e le rappresentazioni del gruppo delle trecce di ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] espressione M denota una 3-varietà senza bordo e A è un campo di gauge (detto anche potenziale di gauge o connessione di gauge) definito su M. Il campo di gauge è una 1-forma su M a valori in una rappresentazione di un'algebra di Lie e il gruppo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] capitolo riguarda la nozione generale di dimensione di un anello e di un'algebra. Il nono capitolo studia gli anelli locali noetheriani completi.
Varietà
Il fascicolo di risultati sulle Variétés différentielles et analitiques (VAR) espone le nozioni ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] XIX sec., dei quali abbiamo detto. La potenza dei nuovi metodi algebrici e analitici portò i matematici, con rare eccezioni, a escludere ciò , ancor più in generale, la descrizione di una varietà in uno spazio di dimensione n mediante k parametri ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] la variabilità tipica dei processi algoritmici e la varietà di casi particolari che ne discende sono componenti fa però appello a proprietà dei polinomi e a loro trasformazioni algebriche. Supponiamo che il polinomio abbia uno zero molto più grande ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] del grado. Il grado, deg(I-C,G,p) si ottiene dal calcolo algebrico del numero di soluzioni dell'equazione:
[6] (I-C)u=p, u∈ ))=0. Tali risultati si sono dimostrati utili in una grande varietà di applicazioni in fisica e in ingegneria, come i problemi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] : il teorema di esistenza di Hodge degli integrali armonici su una varietà di Riemann di dimensione n; teorema splendido in sé e gravido di importanti conseguenze per la geometria algebrica e la teoria dei gruppi continui. (G. Fichera)
Tavola II ...
Leggi Tutto
La grande scienza. Automi e linguaggi formali
Dominique Perrin
Automi e linguaggi formali
La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] in una decomposizione, è un problema aperto.
Semigruppi e varietà
Si comprese presto che gli automi finiti sono strettamente legati ai semigruppi finiti, ottenendo così l'analogo algebrico della definizione di riconoscibilità da parte di un automa ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...